Adsorption and decomposition of Mo(CO)6 on thin Al2O3 films: fabrication of metallic molybdenum model catalyst

[1]  Yi Chen,et al.  The Preparation of Molybdenum Oxynitride by Hydrazine Reduction of MoO3 at Moderate Temperature and Its Application in the Selective Hydrogenation of Long-Chain Linear Alkadienes , 2002 .

[2]  G. Djéga-Mariadassou,et al.  Phosphorus-Doped Molybdenum Oxynitrides and Oxygen-Modified Molybdenum Carbides: Synthesis, Characterization, and Determination of Turnover Rates for Propene Hydrogenation , 2002 .

[3]  E. P. Reddy,et al.  An XPS study of dispersion and chemical state of MoO3 on Al2O3-TiO2 binary oxide support , 2001 .

[4]  S. Bourgeois,et al.  Effect of the surface stoichiometry on the interaction of Mo with TiO2 (110) , 2000 .

[5]  W. Tysoe,et al.  The Decomposition of Molybdenum Hexacarbonyl on Thin Alumina Films at High Temperatures: Formation and Reduction of Carbides , 2000 .

[6]  W. Tysoe,et al.  Surface Chemistry and Decarbonylation of Molybdenum Hexacarbonyl on Thin Alumina Films , 2000 .

[7]  J. Stoch,et al.  Dependence of reactivity on pretreatment in molybdena–alumina catalysts for propene metathesis , 2000 .

[8]  Jung-Hee Lee,et al.  Surface structure of ultra-thin A12O3 films on metal substrates , 2000 .

[9]  A. Fukuoka,et al.  Propene metathesis reaction on di- and trinuclear molybdenum complexes grafted on mesoporous FSM-16 and silica structural characterization and their catalytic performances , 2000 .

[10]  J. Parera,et al.  Alkane isomerization on MoO3/ZrO2 catalysts , 2000 .

[11]  V. Keller,et al.  Catalytic activity of reduced MoO3/α-Al2O3 for hexanes reforming. II. Catalytic activity and mechanistic approach using 13C tracer studies and probe molecules , 2000 .

[12]  P. A. Brühwiler,et al.  Metal-oxide interaction for metal clusters on a metal-supported thin alumina film , 1999 .

[13]  R. Psaro,et al.  Supported metals derived from organometallics , 1998 .

[14]  H. Ang,et al.  Temperature programmed decomposition (TPDE) of [Mo(CO)(6)] on metal oxide supports: a novel tool to elucidate surface acidity and surface-mediated reactions. , 1998, Talanta.

[15]  G. Xu,et al.  Thermal and photoinduced chemistry of Mo(CO)6 on clean and chemically modified Ru(001) , 1996 .

[16]  T. Madey,et al.  Growth of ultrathin crystalline Al2O3 films on Ru(0001) and Re(0001) surfaces , 1996 .

[17]  T. L. Brown,et al.  KINETICS OF SURFACE PROCESSES FOR MO(CO)6 ON PARTIALLY DEHYDROXYLATED ALUMINA AND HYDROXYLATED ALUMINA. OBSERVATION OF MO(CO)5(ADS) , 1995 .

[18]  T. Pakkanen,et al.  SUBCARBONYL SPECIES OF MOLYBDENUM HEXACARBONYL SUPPORTED ON SILICA. A DRIFT STUDY , 1994 .

[19]  Apai,et al.  Surface phonons in thin aluminum oxide films: Thickness, beam-energy, and symmetry-mixing effects. , 1991, Physical review. B, Condensed matter.

[20]  S. So,et al.  Resonant photodissociation of Mo(CO)6 adsorbed on graphite and Ag(111) , 1991 .

[21]  W. Ho,et al.  Photodissociation of adsorbed Mo(CO)6 induced by direct photoexcitation and hot electron attachment. I. Surface chemistry , 1990 .

[22]  Chen,et al.  Effect of complete oxidation on the vibrational properties of aluminum oxide thin films: An electron-energy-loss-spectroscopy study. , 1990, Physical review. B, Condensed matter.

[23]  T. Germer,et al.  Energy transfer and photochemistry on a metal surface: Mo(CO)6 on Rh(100) , 1989 .

[24]  S. Bernasek,et al.  Molybdenum deposition from the decomposition of molybdenum hexacarbonyl , 1989 .

[25]  Á. Rédey,et al.  The surface chemistry of molybdena-alumina catalysts reduced in H2 at elevated temperatures , 1988 .

[26]  A. Zecchina,et al.  Infrared characterization of group VIB metal carbonyls adsorbed on .gamma.-alumina , 1988 .

[27]  S. Bernasek,et al.  Summary Abstract: The adsorption and decomposition of molybdenum hexacarbonyl on Mo and Si surfaces , 1987 .

[28]  W. Ho,et al.  Mechanisms of laser interaction with metal carbonyls adsorbed on Si(111)7×7: Thermal vs photoelectronic effects , 1987 .

[29]  J. Steinfeld,et al.  Deposition of refractory metal films by rare‐gas halide laser photodissociation of metal carbonyls , 1986 .

[30]  J. Peri Computerized infrared studies of molybdenum/alumina and molybdenum/silica catalysts , 1982 .

[31]  H. Yao Surface interaction in the MoO3γ-Al2O3 system , 1981 .

[32]  J. Mahan,et al.  Laser photodeposition of refractory metals , 1981, IEEE Journal of Quantum Electronics.

[33]  R. Bowman,et al.  Molybdenum(0)/dehydroxylated alumina catalysts , 1981 .

[34]  F. R. Brown,et al.  Surface spectroscopic study of tungsten-alumina catalysts using x-ray photoelectron, ion scattering, and Raman spectroscopies , 1980 .

[35]  R. Howe,et al.  Spectroscopic characterization of alumina-supported transition metal carbonyl catalysts. 1. Mo(CO)6 , 1980 .

[36]  B. Delmon,et al.  Gravimetric study of reduction by H2 of hydrodesulphurization CoMo/γ-Al2O3 catalysts in their oxidic precursor forms , 1980 .

[37]  F. Massoth Characterization of Molybdena Catalysts , 1979 .

[38]  R. Burwell,et al.  The surface chemistry of molybdenum in states of lower oxidation on alumina , 1978 .

[39]  D. Hercules,et al.  A surface study of cobalt-molybdena-alumina catalysts using x-ray photoelectron spectroscopy , 1976 .

[40]  A. Cimino The application of X-ray photoelectron spectroscopy to the study of molybdenum oxides and supported molybdenum oxide catalysts , 1975 .

[41]  F. Massoth Studies of molybdena-alumina catalysts: II. Kinetics and stoichiometry of reduction , 1973 .