Markov chain Monte Carlo algorithms with sequential proposals
暂无分享,去创建一个
[1] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[2] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[3] J. Liouville,et al. Note sur la Théorie de la Variation des constantes arbitraires. , 1838 .
[4] J. Rosenthal,et al. On adaptive Markov chain Monte Carlo algorithms , 2005 .
[5] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[6] A. Mira. On Metropolis-Hastings algorithms with delayed rejection , 2001 .
[7] J. Rosenthal,et al. Optimal scaling of discrete approximations to Langevin diffusions , 1998 .
[8] M. Plummer,et al. CODA: convergence diagnosis and output analysis for MCMC , 2006 .
[9] J. M. Sanz-Serna,et al. Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.
[10] J. Rosenthal,et al. Convergence of Slice Sampler Markov Chains , 1999 .
[11] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[12] J. Rosenthal,et al. Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.
[13] Sourendu Gupta,et al. The acceptance probability in the hybrid Monte Carlo method , 1990 .
[14] S. Kou,et al. Equi-energy sampler with applications in statistical inference and statistical mechanics , 2005, math/0507080.
[15] Jeffrey S. Rosenthal,et al. Optimal Proposal Distributions and Adaptive MCMC , 2011 .
[16] G. Fort,et al. Limit theorems for some adaptive MCMC algorithms with subgeometric kernels , 2008, 0807.2952.
[17] P. Green,et al. Delayed rejection in reversible jump Metropolis–Hastings , 2001 .
[18] L Tierney,et al. Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.
[19] Heikki Haario,et al. Componentwise adaptation for high dimensional MCMC , 2005, Comput. Stat..
[20] P. Fearnhead,et al. The Random Walk Metropolis: Linking Theory and Practice Through a Case Study , 2010, 1011.6217.
[21] Ernst Hairer,et al. Simulating Hamiltonian dynamics , 2006, Math. Comput..
[22] C. Andrieu,et al. On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.
[23] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[24] P. Peskun,et al. Optimum Monte-Carlo sampling using Markov chains , 1973 .
[25] J. Sexton,et al. Hamiltonian evolution for the hybrid Monte Carlo algorithm , 1992 .
[26] Jun S. Liu,et al. The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .
[27] S. Walker. Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .
[28] Radford M. Neal. Slice Sampling , 2003, The Annals of Statistics.
[29] C. Andrieu,et al. Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond the reversible scenario , 2019, 1906.06197.
[30] J. M. Sanz-Serna,et al. Compressible generalized hybrid Monte Carlo. , 2014, The Journal of chemical physics.
[31] Radford M. Neal. An improved acceptance procedure for the hybrid Monte Carlo algorithm , 1992, hep-lat/9208011.
[32] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[33] Michael Betancourt,et al. A Conceptual Introduction to Hamiltonian Monte Carlo , 2017, 1701.02434.
[34] A. Horowitz. A generalized guided Monte Carlo algorithm , 1991 .
[35] G. Roberts,et al. Perfect slice samplers , 2001 .
[36] A. Doucet,et al. Piecewise-Deterministic Markov Chain Monte Carlo , 2017, 1707.05296.
[37] C. Andrieu,et al. On the efficiency of adaptive MCMC algorithms , 2007 .
[38] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[39] G. Parisi,et al. Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.
[40] Jesús María Sanz-Serna,et al. Extra Chance Generalized Hybrid Monte Carlo , 2014, J. Comput. Phys..
[41] J. Sexton,et al. Hamiltonian evolution for the hybrid Monte Carlo algorithm , 1992 .
[42] Christophe Andrieu,et al. A tutorial on adaptive MCMC , 2008, Stat. Comput..
[43] J. S. Rosenthal. Optimal scaling of discrete approximations to Langevin , 1997 .
[44] C. Geyer. Markov Chain Monte Carlo Maximum Likelihood , 1991 .
[45] E A J F Peters,et al. Rejection-free Monte Carlo sampling for general potentials. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[46] Jonathan R Goodman,et al. Ensemble samplers with affine invariance , 2010 .
[47] Jiqiang Guo,et al. Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.
[48] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .
[49] A. Doucet,et al. The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method , 2015, 1510.02451.
[50] Ben Calderhead,et al. A general construction for parallelizing Metropolis−Hastings algorithms , 2014, Proceedings of the National Academy of Sciences.
[51] K. Hukushima,et al. Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.
[52] Jascha Sohl-Dickstein,et al. Hamiltonian Monte Carlo Without Detailed Balance , 2014, ICML.
[53] S. Duane,et al. Hybrid Monte Carlo , 1987 .