A silicon metal-oxide-semiconductor electron spin-orbit qubit

The silicon metal-oxide-semiconductor (MOS) material system is a technologically important implementation of spin-based quantum information processing. However, the MOS interface is imperfect leading to concerns about 1/f trap noise and variability in the electron g-factor due to spin–orbit (SO) effects. Here we advantageously use interface–SO coupling for a critical control axis in a double-quantum-dot singlet–triplet qubit. The magnetic field-orientation dependence of the g-factors is consistent with Rashba and Dresselhaus interface–SO contributions. The resulting all-electrical, two-axis control is also used to probe the MOS interface noise. The measured inhomogeneous dephasing time, $$T_{{\mathrm{2m}}}^ \star$$T2m⋆, of 1.6 μs is consistent with 99.95% 28Si enrichment. Furthermore, when tuned to be sensitive to exchange fluctuations, a quasi-static charge noise detuning variance of 2 μeV is observed, competitive with low-noise reports in other semiconductor qubits. This work, therefore, demonstrates that the MOS interface inherently provides properties for two-axis qubit control, while not increasing noise relative to other material choices.As the performance of silicon-based qubits has improved, there has been increasing focus on developing designs that are compatible with industrial processes. Here, Jock et al. exploit spin-orbit coupling to demonstrate full, all-electrical control of a metal-oxide-semiconductor electron spin qubit.

[1]  X Mi,et al.  High-Resolution Valley Spectroscopy of Si Quantum Dots. , 2017, Physical review letters.

[2]  Zhan Shi,et al.  Two-axis control of a singlet–triplet qubit with an integrated micromagnet , 2014, Proceedings of the National Academy of Sciences.

[3]  D. E. Savage,et al.  Extending the coherence of a quantum dot hybrid qubit , 2016, 1611.04945.

[4]  Joel R. Wendt,et al.  High-fidelity single-shot readout for a spin qubit via an enhanced latching mechanism , 2017, 1703.02651.

[5]  R. Howard,et al.  Discrete Resistance Switching in Submicrometer Silicon Inversion Layers: Individual Interface Traps and Low-Frequency ( 1 f ?) Noise , 1984 .

[6]  R. Duine,et al.  New perspectives for Rashba spin-orbit coupling. , 2015, Nature materials.

[7]  J. Kainz,et al.  Microscopic interface asymmetry and spin-splitting of electron subbands in semiconductor quantum structures , 2002 .

[8]  E. Ivchenko,et al.  Spin splitting in symmetrical SiGe quantum wells , 2003, cond-mat/0310200.

[9]  Saeed Fallahi,et al.  High-fidelity entangling gate for double-quantum-dot spin qubits , 2016, 1608.04258.

[10]  M. Lagally,et al.  Valley dependent anisotropic spin splitting in silicon quantum dots , 2018, npj Quantum Information.

[11]  Gerhard Klimeck,et al.  Interface-induced spin-orbit interaction in silicon quantum dots and prospects for scalability , 2017, Physical Review B.

[12]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[13]  A. Yacoby,et al.  Charge noise spectroscopy using coherent exchange oscillations in a singlet-triplet qubit. , 2012, Physical review letters.

[14]  P. Voisin,et al.  Electric field effect on electron spin splitting in SiGe/Si quantum wells , 2007, 0712.1955.

[15]  A. Yacoby,et al.  Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization , 2009, 1009.5343.

[16]  Adele E. Schmitz,et al.  Isotopically enhanced triple-quantum-dot qubit , 2015, Science Advances.

[17]  Tammy Pluym,et al.  Coherent coupling between a quantum dot and a donor in silicon , 2015, Nature Communications.

[18]  Andrew S. Dzurak,et al.  Electron g -factor of valley states in realistic silicon quantum dots , 2017, Physical Review B.

[19]  D. Culcer,et al.  Charge noise, spin-orbit coupling, and dephasing of single-spin qubits , 2014 .

[20]  A. Gossard,et al.  Quantum coherence in a one-electron semiconductor charge qubit. , 2010, Physical review letters.

[21]  A. Fert,et al.  Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces , 2016, Nature.

[22]  H. Bluhm,et al.  Quadrupolar and anisotropy effects on dephasing in two-electron spin qubits in GaAs , 2015, Nature Communications.

[23]  Menno Veldhorst,et al.  Electrically driven spin qubit based on valley mixing. , 2016, Physical review. B.

[24]  Erik Nielsen,et al.  Valley splitting of single-electron Si MOS quantum dots , 2016, 1610.03388.

[25]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[26]  Gerhard Klimeck,et al.  Spin–orbit splittings in Si/SiGe quantum wells: from ideal Si membranes to realistic heterostructures , 2009, 0908.2417.

[27]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[28]  R. S. Ross,et al.  Pauli spin blockade in undoped Si/SiGe two-electron double quantum dots , 2011, 1106.6285.

[29]  Zhan Shi,et al.  Coherent quantum oscillations and echo measurements of a Si charge qubit , 2013 .

[30]  Andrew S. Dzurak,et al.  Logical Qubit in a Linear Array of Semiconductor Quantum Dots , 2016, Physical Review X.

[31]  M. Veldhorst,et al.  Impact of g -factors and valleys on spin qubits in a silicon double quantum dot , 2016, 1608.07748.

[32]  S. Sarma,et al.  Hyperfine interactions in silicon quantum dots , 2010, 1007.1000.

[33]  Takashi Nakajima,et al.  A fault-tolerant addressable spin qubit in a natural silicon quantum dot , 2016, Science Advances.

[34]  S. Sarma,et al.  Quantum Decoherence of the Central Spin in a Sparse System of Dipolar Coupled Spins , 2012, 1204.2834.

[35]  D. Culcer,et al.  Dephasing of Si singlet-triplet qubits due to charge and spin defects , 2013, 1306.4428.

[36]  M. Veldhorst,et al.  Spin-orbit coupling and operation of multivalley spin qubits , 2015, 1505.01213.

[37]  L. M. K. Vandersypen,et al.  Coherent shuttle of electron-spin states , 2017, npj Quantum Information.

[38]  J. R. Petta,et al.  A Reconfigurable Gate Architecture for Si/SiGe Quantum Dots , 2015, 1502.01624.

[39]  R Maurand,et al.  A CMOS silicon spin qubit , 2016, Nature Communications.

[40]  R. Joynt,et al.  Relaxation of excited spin, orbital, and valley qubit states in ideal silicon quantum dots , 2013, 1301.0260.

[41]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[42]  Gerhard Klimeck,et al.  Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting , 2013, Nature Communications.

[43]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[44]  Shinichi Tojo,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[45]  Coherent manipulation of valley states at multiple charge configurations of a silicon quantum dot device , 2017, Nature Communications.

[46]  J. Wendt,et al.  Coupling MOS quantum dot and phosphorous donor qubit systems , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).