A single atom transistor
暂无分享,去创建一个
M. Y. Simmons | Sunhee Lee | H. Ryu | Gerhard Klimeck | L. Hollenberg | S. Mahapatra | M. Simmons | J. Miwa | O. Warschkow | M. Fuechsle
[1] G. Lopinski,et al. Self-directed growth of molecular nanostructures on silicon , 2000, Nature.
[2] A. G. Fowler,et al. Two-dimensional architectures for donor-based quantum computing , 2006 .
[3] G. J. Milburn,et al. Charge-based quantum computing using single donors in semiconductors , 2004 .
[4] Michelle Y. Simmons,et al. Atomic-scale, all epitaxial in-plane gated donor quantum dot in silicon. , 2009, Nano letters.
[5] John R. Tucker,et al. Nanoscale patterning and oxidation of H‐passivated Si(100)‐2×1 surfaces with an ultrahigh vacuum scanning tunneling microscope , 1994 .
[6] A. K. Ramdas,et al. REVIEW ARTICLE: Spectroscopy of the solid-state analogues of the hydrogen atom: donors and acceptors in semiconductors , 1981 .
[7] A. Asenov,et al. Where Do the Dopants Go? , 2005, Science.
[8] Insoo Woo,et al. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET , 2008 .
[9] H. Ryu,et al. Electronic structure of realistically extended atomistically resolved disordered Si:P δ-doped layers , 2011 .
[10] Andrew Alves,et al. Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor. , 2009, Nano letters.
[11] Mark A. Eriksson,et al. Embracing the quantum limit in silicon computing , 2011, Nature.
[12] H. Ryu,et al. Ohm’s Law Survives to the Atomic Scale , 2012, Science.
[13] L. Hollenberg,et al. Single-shot readout of an electron spin in silicon , 2010, Nature.
[14] Gerhard Klimeck,et al. Development of a Nanoelectronic 3-D (NEMO 3-D ) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots , 2002 .
[15] B. E. Kane. A silicon-based nuclear spin quantum computer , 1998, Nature.
[16] Michelle Y. Simmons,et al. Thermal dissociation and desorption of PH3 on Si(001): A reinterpretation of spectroscopic data , 2006 .
[17] G. Binnig,et al. Tunneling through a controllable vacuum gap , 1982 .
[18] Xuedong Hu,et al. Exchange in silicon-based quantum computer architecture. , 2002, Physical review letters.
[19] N. Collaert,et al. Electric Field Reduced Charging Energies and Two-Electron Bound Excited States of Single Donors in Silicon , 2011, 1107.2701.
[20] Takahiro Shinada,et al. Enhancing semiconductor device performance using ordered dopant arrays , 2005, Nature.
[21] Shinichi Tojo,et al. Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.
[22] Eli Yablonovitch,et al. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.
[23] D. Eigler,et al. Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.
[24] Yuan Taur,et al. Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.
[25] M Y Simmons,et al. Atomically precise placement of single dopants in si. , 2003, Physical review letters.
[26] James A. Hutchby,et al. Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.
[27] Gerhard Klimeck,et al. Quantum device simulation with a generalized tunneling formula , 1995 .
[28] X Jehl,et al. Single-donor ionization energies in a nanoscale CMOS channel. , 2010, Nature nanotechnology.