A single atom transistor

Over the past decade we have developed a radical new strategy for the fabrication of atomic-scale devices in silicon [1]. Using this process we have demonstrated few electron, single crystal quantum dots [2], conducting nanoscale wires with widths down to ~1.5nm [3] and most recently a single atom transistor [4]. We will present atomic-scale images and electronic characteristics of these atomically precise devices and demonstrate the impact of strong vertical and lateral confinement on electron transport. We will also discuss the opportunities ahead for atomic-scale quantum computing architectures and some of the challenges to achieving truly atomically precise devices in all three spatial dimensions.

[1]  G. Lopinski,et al.  Self-directed growth of molecular nanostructures on silicon , 2000, Nature.

[2]  A. G. Fowler,et al.  Two-dimensional architectures for donor-based quantum computing , 2006 .

[3]  G. J. Milburn,et al.  Charge-based quantum computing using single donors in semiconductors , 2004 .

[4]  Michelle Y. Simmons,et al.  Atomic-scale, all epitaxial in-plane gated donor quantum dot in silicon. , 2009, Nano letters.

[5]  John R. Tucker,et al.  Nanoscale patterning and oxidation of H‐passivated Si(100)‐2×1 surfaces with an ultrahigh vacuum scanning tunneling microscope , 1994 .

[6]  A. K. Ramdas,et al.  REVIEW ARTICLE: Spectroscopy of the solid-state analogues of the hydrogen atom: donors and acceptors in semiconductors , 1981 .

[7]  A. Asenov,et al.  Where Do the Dopants Go? , 2005, Science.

[8]  Insoo Woo,et al.  Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET , 2008 .

[9]  H. Ryu,et al.  Electronic structure of realistically extended atomistically resolved disordered Si:P δ-doped layers , 2011 .

[10]  Andrew Alves,et al.  Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor. , 2009, Nano letters.

[11]  Mark A. Eriksson,et al.  Embracing the quantum limit in silicon computing , 2011, Nature.

[12]  H. Ryu,et al.  Ohm’s Law Survives to the Atomic Scale , 2012, Science.

[13]  L. Hollenberg,et al.  Single-shot readout of an electron spin in silicon , 2010, Nature.

[14]  Gerhard Klimeck,et al.  Development of a Nanoelectronic 3-D (NEMO 3-D ) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots , 2002 .

[15]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[16]  Michelle Y. Simmons,et al.  Thermal dissociation and desorption of PH3 on Si(001): A reinterpretation of spectroscopic data , 2006 .

[17]  G. Binnig,et al.  Tunneling through a controllable vacuum gap , 1982 .

[18]  Xuedong Hu,et al.  Exchange in silicon-based quantum computer architecture. , 2002, Physical review letters.

[19]  N. Collaert,et al.  Electric Field Reduced Charging Energies and Two-Electron Bound Excited States of Single Donors in Silicon , 2011, 1107.2701.

[20]  Takahiro Shinada,et al.  Enhancing semiconductor device performance using ordered dopant arrays , 2005, Nature.

[21]  Shinichi Tojo,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[22]  Eli Yablonovitch,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[23]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[24]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[25]  M Y Simmons,et al.  Atomically precise placement of single dopants in si. , 2003, Physical review letters.

[26]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[27]  Gerhard Klimeck,et al.  Quantum device simulation with a generalized tunneling formula , 1995 .

[28]  X Jehl,et al.  Single-donor ionization energies in a nanoscale CMOS channel. , 2010, Nature nanotechnology.