Piezoelectric tuning of narrowband perfect plasmonic absorbers via an optomechanic cavity.

Optical antennas enable the control of light-matter interaction on the nanometer scale. Efficient on-chip electrical switching of plasmonic resonances is a crucial step toward the integration of optical antennas into practical optoelectronic circuits. We propose and numerically investigate the on-chip low-voltage linear electrical tuning of a narrowband optical antenna perfect absorber via a piezoelectric optomechanic cavity. Near unity absorption is realized by an array of gold nanostrip antennas separated from a membrane-based deformable backreflector by a small gap. A narrow linewidth of 33 nm at 2.58 μm is realized through the coupling between the plasmonic mode and photonic mode in the cavity-enhanced antenna structure. An aluminum nitride piezoelectric layer enabled efficient actuation of the backreflector and therefore changed the gap size, allowing for the tuning of the spectral absorption. The peak wavelength can be shifted linearly by 250 nm with 10 V of tuning voltage, and the tuning range is not limited by the pull-in effect. The polarization dependence of the nanostrip antenna coupled with the optomechanic cavity allows the use of our device as a voltage tunable polarization control device.

[1]  Han Yan,et al.  Electrostatic pull-in instability in MEMS/NEMS: A review , 2014 .

[2]  N. Zheludev,et al.  Nonlinear dielectric optomechanical metamaterials , 2013, Light: Science & Applications.

[3]  Dmitriy Minond,et al.  Discovery of an enzyme and substrate selective inhibitor of ADAM10 using an exosite-binding glycosylated substrate , 2016, Scientific Reports.

[4]  L. Novotný,et al.  Antennas for light , 2011 .

[5]  Ekmel Ozbay,et al.  Coupling enhancement of split ring resonators on graphene , 2014 .

[6]  Jing Kong,et al.  Broad electrical tuning of graphene-loaded plasmonic antennas. , 2013, Nano letters.

[7]  Gordon S. Kino,et al.  Optical antennas: Resonators for local field enhancement , 2003 .

[8]  Xiaoyuan Lu,et al.  Metal-dielectric-metal based narrow band absorber for sensing applications. , 2015, Optics express.

[9]  Kaya Tatar,et al.  Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces , 2015 .

[10]  K. Wan,et al.  Pull-in of a pre-stressed thin film by an electrostatic potential: A 1-D rectangular bridge and a 2-D circular diaphragm , 2010 .

[11]  Gianluca Piazza,et al.  Sub-1-volt Piezoelectric Nanoelectromechanical Relays With Millivolt Switching Capability , 2014, IEEE Electron Device Letters.

[12]  Harald Giessen,et al.  Cavity-enhanced localized plasmon resonance sensing , 2010 .

[13]  Hai Zhu,et al.  Optomechanical enhancement of doubly resonant 2D optical nonlinearity , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[14]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[15]  R. Mahameed,et al.  Piezoelectric aluminum nitride nanoelectromechanical actuators , 2009 .

[16]  Willie J. Padilla,et al.  Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials , 2013 .

[17]  J. Nichols,et al.  Tuning electronic structure via epitaxial strain in Sr2IrO4 thin films , 2013, 1302.0918.

[18]  Harald Giessen,et al.  Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing. , 2015, Nano letters.

[19]  Jonghwan Kim,et al.  Electrical control of optical plasmon resonance with graphene , 2013, CLEO: 2013.

[20]  H. Tang,et al.  Broadband nanoelectromechanical phase shifting of light on a chip , 2013, 1312.2454.

[21]  Eric Plum,et al.  An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. , 2013, Nature nanotechnology.

[22]  Harry A. Atwater,et al.  Field-effect induced tunability in hyperbolic metamaterials , 2015 .

[23]  K. Saraswat,et al.  Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna , 2008 .

[24]  Hai Zhu,et al.  Voltage tuning of plasmonic absorbers by indium tin oxide , 2013 .

[25]  Sang‐Hyun Oh,et al.  Engineering metallic nanostructures for plasmonics and nanophotonics , 2012, Reports on progress in physics. Physical Society.

[26]  A. Bonakdar,et al.  Impact of optical antennas on active optoelectronic devices. , 2014, Nanoscale.

[27]  Guo-Qiang Lo,et al.  Split Bull's eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector. , 2011, Nano letters.

[28]  J. Kong,et al.  Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. , 2014, Nano letters.

[29]  Zach DeVito,et al.  Opt , 2017 .

[30]  Nikolay I. Zheludev,et al.  Reconfigurable photonic metamaterials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[31]  Jing Kong,et al.  Wide wavelength tuning of optical antennas on graphene with nanosecond response time. , 2014, Nano letters.

[32]  Shanhui Fan,et al.  S4 : A free electromagnetic solver for layered periodic structures , 2012, Comput. Phys. Commun..

[33]  Gianluca Piazza,et al.  Alumimun nitride piezoelectric NEMS resonators and switches , 2010, Defense + Commercial Sensing.

[34]  Alexandra Boltasseva,et al.  Electrically tunable damping of plasmonic resonances with graphene. , 2012, Nano letters.

[35]  E. Ozbay,et al.  Resonance tuning and broadening of bowtie nanoantennas on graphene , 2014 .