Perceptive movement of susceptible individuals with memory

[1]  Yong-Jung Kim,et al.  Spatial Segregation in Reaction-Diffusion Epidemic Models , 2022, SIAM J. Appl. Math..

[2]  Yanni Xiao,et al.  Analysis of a diffusive epidemic system with spatial heterogeneity and lag effect of media impact , 2022, Journal of Mathematical Biology.

[3]  Xin Pei,et al.  Modeling the early transmission of COVID-19 in New York and San Francisco using a pairwise network model , 2022, Infectious Disease Modelling.

[4]  V. Chernozhukov,et al.  A Response to Philippe Lemoine's Critique on our Paper"Causal Impact of Masks, Policies, Behavior on Early Covid-19 Pandemic in the U.S." , 2021, 2110.06136.

[5]  S. Ruan,et al.  Estimating asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan: a mathematical modeling study , 2021, BMC Infectious Diseases.

[6]  Junping Shi,et al.  Spatial movement with distributed memory , 2021, Journal of Mathematical Biology.

[7]  I. Ahn,et al.  Global solvability of prey–predator models with indirect predator-taxis , 2021 .

[8]  David K. Jones,et al.  Neighborhood income and physical distancing during the COVID-19 pandemic in the U.S. , 2020, medRxiv.

[9]  Chuncheng Wang,et al.  Diffusive Spatial Movement with Memory , 2020, Journal of Dynamics and Differential Equations.

[10]  Jianhong Wu,et al.  Modeling the impact of mass influenza vaccination and public health interventions on COVID-19 epidemics with limited detection capability , 2020, Mathematical Biosciences.

[11]  Can Hou,et al.  The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019 (COVID‐19): A well‐mixed SEIR model analysis , 2020, Journal of medical virology.

[12]  Yongli Cai,et al.  A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action , 2020, International Journal of Infectious Diseases.

[13]  Wenjie Zuo,et al.  Existence and stability of steady-state solutions of reaction–diffusion equations with nonlocal delay effect , 2020, Zeitschrift für angewandte Mathematik und Physik.

[14]  Zhisheng Shuai,et al.  Asymptotic profiles of the steady states for an SIS epidemic patch model with asymmetric connectivity matrix , 2019, Journal of Mathematical Biology.

[15]  Daozhou Gao,et al.  Fast diffusion inhibits disease outbreaks , 2019, Proceedings of the American Mathematical Society.

[16]  F. Brauer The Final Size of a Serious Epidemic , 2018, Bulletin of mathematical biology.

[17]  Yuan Lou,et al.  Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments , 2017 .

[18]  R. Peng,et al.  Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion , 2017, European Journal of Applied Mathematics.

[19]  Jianshe Yu,et al.  Stability Analysis of a Reaction–Diffusion Equation with Spatiotemporal Delay and Dirichlet Boundary Condition , 2016 .

[20]  Keng Deng,et al.  Dynamics of a susceptible–infected–susceptible epidemic reaction–diffusion model , 2016 .

[21]  Boying Wu,et al.  Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis ✩ , 2016 .

[22]  Maia Martcheva,et al.  An Introduction to Mathematical Epidemiology , 2015 .

[23]  Wenjie Zuo,et al.  Stability and bifurcation analysis of a reaction–diffusion equation with spatio-temporal delay , 2015 .

[24]  Xinru Cao,et al.  Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces , 2014, 1405.6666.

[25]  Huaiping Zhu,et al.  A SIS reaction-diffusion-advection model in a low-risk and high-risk domain , 2013, 1310.8360.

[26]  Rui Peng,et al.  A reaction–diffusion SIS epidemic model in a time-periodic environment , 2012 .

[27]  Michael Winkler,et al.  Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model , 2010 .

[28]  Rui Peng,et al.  Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Part I , 2009 .

[29]  Rui Peng,et al.  Global stability of the steady states of an SIS epidemic reaction–diffusion model☆ , 2009 .

[30]  Xiao-Qiang Zhao,et al.  Spatial dynamics of a nonlocal and time-delayed reaction–diffusion system , 2008 .

[31]  Fred Brauer,et al.  Oscillations in a patchy environment disease model. , 2008, Mathematical biosciences.

[32]  Yuan Lou,et al.  Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model , 2008 .

[33]  Wan-Tong Li,et al.  On the Diffusive Nicholson’s Blowflies Equation with Nonlocal Delay , 2007, J. Nonlinear Sci..

[34]  Yuan Lou,et al.  Asymptotic Profiles of the Steady States for an SIS Epidemic Patch Model , 2007, SIAM J. Appl. Math..

[35]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[36]  C. Cosner,et al.  Spatial Ecology via Reaction-Diffusion Equations: Cantrell/Diffusion , 2004 .

[37]  C. Cosner,et al.  Spatial Ecology via Reaction-Diffusion Equations , 2003 .

[38]  F. Brauer,et al.  Mathematical Models in Population Biology and Epidemiology , 2001 .

[39]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[40]  Nicholas F. Britton,et al.  Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model , 1990 .

[41]  H. Amann Dynamic theory of quasilinear parabolic systems , 1989 .

[42]  J. Yorke,et al.  Gonorrhea Transmission Dynamics and Control , 1984 .

[43]  Nicholas D. Alikakos,et al.  An application of the invariance principle to reaction-diffusion equations , 1979 .

[44]  R. May,et al.  Population biology of infectious diseases: Part II , 1979, Nature.

[45]  J. P. Lasalle,et al.  Dissipative periodic processes , 1971 .

[46]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[47]  Junping Shi,et al.  Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis , 2021, Discrete & Continuous Dynamical Systems - B.

[48]  Yueling Cheng Stability Analysis for a Reaction-Diffusion Equation with Spatio-temporal Delay , 2020 .

[49]  Fred Brauer,et al.  Can treatment increase the epidemic size? , 2016, Journal of mathematical biology.

[50]  Shangbing Ai,et al.  Traveling wave fronts for generalized Fisher equations with spatio-temporal delays , 2007 .

[51]  J. So,et al.  Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain , 2002, Journal of mathematical biology.

[52]  L. Dung Dissipativity and global attractors for a class of quasilinear parabolic systems , 1997 .

[53]  H. Amann Dynamic theory of quasilinear parabolic systems. III. Global existence (Erratum). , 1990 .