Spatiotopic perceptual maps in humans: evidence from motion adaptation

How our perceptual experience of the world remains stable and continuous despite the frequent repositioning eye movements remains very much a mystery. One possibility is that our brain actively constructs a spatiotopic representation of the world, which is anchored in external—or at least head-centred—coordinates. In this study, we show that the positional motion aftereffect (the change in apparent position after adaptation to motion) is spatially selective in external rather than retinal coordinates, whereas the classic motion aftereffect (the illusion of motion after prolonged inspection of a moving source) is selective in retinotopic coordinates. The results provide clear evidence for a spatiotopic map in humans: one which can be influenced by image motion.

[1]  Bremmer,et al.  Eye position encoding in the macaque posterior parietal cortex , 1998, The European journal of neuroscience.

[2]  M Concetta Morrone,et al.  Neural mechanisms for timing visual events are spatially selective in real-world coordinates , 2007, Nature Neuroscience.

[3]  A. Dale,et al.  Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging , 1995, Nature.

[4]  Ehud Zohary,et al.  Beyond retinotopic mapping: the spatial representation of objects in the human lateral occipital complex. , 2007, Cerebral cortex.

[5]  P. Cavanagh,et al.  Motion adaptation shifts apparent position without the motion aftereffect , 2003, Perception & psychophysics.

[6]  Shin'ya Nishida,et al.  Influence of motion signals on the perceived position of spatial pattern , 1999, Nature.

[7]  R. Addams LI. An account of a peculiar optical phænomenon seen after having looked at a moving body , 1834 .

[8]  R. Andersen,et al.  Posterior parietal cortex. , 1989, Reviews of oculomotor research.

[9]  Ravi S. Menon,et al.  Representation of Head-Centric Flow in the Human Motion Complex , 2006, The Journal of Neuroscience.

[10]  Alexandre Pouget,et al.  A computational perspective on the neural basis of multisensory spatial representations , 2002, Nature Reviews Neuroscience.

[11]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[12]  R. Snowden,et al.  Shifts in perceived position following adaptation to visual motion , 1998, Current Biology.

[13]  Charles J. Duffy,et al.  Cortical Neurons Encoding Path and Place: Where You Go Is Where You Are , 2002, Science.

[14]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[15]  R. M. Siegel,et al.  Maps of Visual Space in Human Occipital Cortex Are Retinotopic, Not Spatiotopic , 2008, The Journal of Neuroscience.

[16]  Tutis Vilis,et al.  Eye position signals modulate early dorsal and ventral visual areas. , 2002, Cerebral cortex.

[17]  D. Burr,et al.  Spatiotopic selectivity of BOLD responses to visual motion in human area MT , 2007, Nature Neuroscience.

[18]  K. D. De Valois,et al.  Vernier acuity with stationary moving Gabors. , 1991, Vision research.

[19]  V. Ramachandran,et al.  Illusory Displacement of Equiluminous Kinetic Edges , 1990, Perception.

[20]  D. Melcher Spatiotopic Transfer of Visual-Form Adaptation across Saccadic Eye Movements , 2005, Current Biology.

[21]  Maria Concetta Morrone,et al.  Spatiotopic Visual Maps Revealed by Saccadic Adaptation in Humans , 2011, Current Biology.

[22]  P. Thier,et al.  Posterior Parietal Cortex Neurons Encode Target Motion in World-Centered Coordinates , 2004, Neuron.

[23]  K. Abe,et al.  Selective gene expression after brain ischemia. , 1993, Progress in brain research.

[24]  Inci Ayhan,et al.  Retinotopic adaptation-based visual duration compression. , 2010, Journal of vision.

[25]  M. Sereno,et al.  A human parietal face area contains aligned head-centered visual and tactile maps , 2006, Nature Neuroscience.

[26]  Markus Lappe,et al.  Visual selectivity for heading in monkey area MST , 2009, Experimental Brain Research.

[27]  P. McGraw,et al.  The segregation and integration of colour in motion processing revealed by motion after-effects , 2006, Proceedings of the Royal Society B: Biological Sciences.

[28]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[29]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  C. Genovese,et al.  Spatial Updating in Human Parietal Cortex , 2003, Neuron.

[31]  David C. Burr,et al.  Spatiotopic Coding of BOLD Signal in Human Visual Cortex Depends on Spatial Attention , 2011, PloS one.

[32]  A. Watson,et al.  Quest: A Bayesian adaptive psychometric method , 1983, Perception & psychophysics.

[33]  David Melcher,et al.  Spatiotopic temporal integration of visual motion across saccadic eye movements , 2003, Nature Neuroscience.

[34]  P. P. Battaglini,et al.  Parietal neurons encoding spatial locations in craniotopic coordinates , 2004, Experimental Brain Research.

[35]  P. Wenderoth,et al.  Retinotopic encoding of the direction aftereffect , 2008, Vision Research.

[36]  Patrick Cavanagh,et al.  The reference frame of the motion aftereffect is retinotopic. , 2009, Journal of vision.

[37]  K. Hoffmann,et al.  Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. , 1997, Journal of neurophysiology.

[38]  Roberto Arrighi,et al.  Spatiotopic selectivity of adaptation-based compression of event duration. , 2011, Journal of vision.

[39]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.