Parametric Approaches for Eigenstructure Assignment in High-order Descriptor Linear Systems

This paper considers eigenstructure assignment in high-order descriptor linear systems via proportional plus derivative state feedback. It is shown that the problem is closely related with a type of so-called high-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two complete parametric methods for the proposed eigenstructure assignment problem are presented. Both methods give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows the closed-loop eigenvalues to be set undetermined and sought via certain optimization procedures. An example shows the effect of the proposed approaches

[1]  Mark J. Balas,et al.  Trends in large space structure control theory: Fondest hopes, wildest dreams , 1982 .

[2]  Guang-Ren Duan,et al.  On the solution to the Sylvester matrix equation AV+BW=EVF , 1996, IEEE Trans. Autom. Control..

[3]  G. R. DUAN,et al.  Solution to matrix equation AV + BW = EVF and eigenstructure assignment for descriptor systems , 1992, Autom..

[4]  Guang-Ren Duan,et al.  Eigenstructure assignment and response analysis in descriptor linear systems with state feedback control , 1998 .

[5]  B. Datta,et al.  Feedback stabilization of a second-order system: A nonmodal approach , 1993 .

[6]  Guang-Ren Duan,et al.  REGULARIZABILITY OF LINEAR DESCRIPTOR SYSTEMS VIA OUTPUT PLUS PARTIAL STATE DERIVATIVE FEEDBACK , 2008 .

[7]  Duan Guang-ren Complete parametric approach for eigenstructure assignment in a class of second-order linear systems , 2001 .

[8]  A. Kress,et al.  Eigenstructure assignment using inverse eigenvalue methods , 1995 .

[9]  D. Howe,et al.  Complete parametric approach for eigenstructure assignment in a class of second-order linear systems , 1999 .

[10]  T. Beelen,et al.  Numerical computation of a coprime factorization of a transfer function matrix , 1987 .

[11]  G. Duan Solutions of the equation AV+BW=VF and their application to eigenstructure assignment in linear systems , 1993, IEEE Trans. Autom. Control..

[12]  Amit Bhaya,et al.  On the design of large flexible space structures(LFSS) , 1985, 1985 24th IEEE Conference on Decision and Control.

[13]  Youdan Kim,et al.  Eigenstructure Assignment Algorithm for Mechanical Second-Order Systems , 1999 .

[14]  John L. Junkins,et al.  Robust eigensystem assignment for flexible structures , 1987 .

[15]  Amit Bhaya,et al.  On the design of large flexible space structures (LFSS) , 1985 .

[16]  Stanoje Bingulac,et al.  On coprime factorization and minimal realization of transfer function matrices using the pseudo-observability concept , 1994 .

[17]  Guang-Ren Duan,et al.  Complete parametric approach for eigenstructure assignment in a class of second-order linear systems , 1999, Autom..

[18]  Biswa Nath Datta,et al.  Numerically robust pole assignment for second-order systems , 1996 .

[19]  Guang-Ren Duan,et al.  Eigenstructure assignment in descriptor systems via output feedback: A new complete parametric approach , 1999 .

[20]  Jer-Nan Juang,et al.  ROBUST EIGENSYSTEM ASSIGNMENT FOR STATE ESTIMATORS USING SECOND-ORDER MODELS , 1992 .