On the Order Monotonicity of the Metric Projection Operator

In this paper we study the order monotonicity of the metric projection P D when the set D is a closed convex set in an ordered Hilbert space or in an ordered uniformly convex Banach space. We indicate also some possible applications of this property.

[1]  G. Isac,et al.  Monotonicity of metric projections onto positive cones of ordered Euclidean spaces , 1986 .

[2]  T. Andô,et al.  Almost everywhere convergence of prediction sequence in Lp (1 < p < ∞) , 1965 .

[3]  R. Dykstra An Algorithm for Restricted Least Squares Regression , 1983 .

[4]  Frank Deutsch,et al.  The Method of Alternating Orthogonal Projections , 1992 .

[5]  A. Peressini Ordered topological vector spaces , 1967 .

[6]  C. Witzgall,et al.  Projections onto order simplexes , 1984 .

[7]  J. Parida,et al.  A linear complementarity problem involving a subgradient , 1988, Bulletin of the Australian Mathematical Society.

[8]  Ya. I. Alber Generalized Projection Operators in Banach Spaces: Properties and Applications , 1993 .

[9]  Peter Shi,et al.  Equivalence of variational inequalities with Wiener-Hopf equations , 1991 .

[10]  Alexander Shapiro,et al.  On differentiability of metric projections in ⁿ. I. Boundary case , 1987 .

[11]  A. Haraux How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities , 1977 .

[12]  Stephen M. Robinson,et al.  Normal Maps Induced by Linear Transformations , 1992, Math. Oper. Res..

[13]  Simeon Reich,et al.  On the unrestricted iteration of projections in Hilbert space , 1991 .

[14]  B. Calvert Nonlinear evolution equations in Banach lattices , 1970 .

[15]  John von Neumann,et al.  The geometry of orthogonal spaces , 1950 .

[16]  Sankatha Prasad Singh,et al.  Approximation Theory, Spline Functions and Applications , 1992 .

[17]  B. Beauzamy Introduction to Banach spaces and their geometry , 1985 .

[18]  R. Tapia,et al.  The metric gradient in normed linear spaces , 1972 .

[19]  G. Isac,et al.  Every generating isotone projection cone is latticial and correct , 1990 .

[20]  G. Isac Complementarity Problems , 1992 .

[21]  J. Hiriart-Urruty At what Points is the Projection Mapping Differentiable , 1982 .

[22]  R. Phelps Metric Projections and the Gradient Projection Method in Banach Spaces , 1985 .

[23]  G. Isac,et al.  Isotone projection cones in Euclidean spaces , 1991 .

[24]  G. McCormick,et al.  The Gradient Projection Method under Mild Differentiability Conditions , 1972 .

[25]  G. Isac Iterative Methods For the General Order Complementarity Problem , 1992 .

[26]  Stephen M. Robinson,et al.  Nonsingularity and symmetry for linear normal maps , 1993, Math. Program..

[27]  H. D. Brunk Uniform Inequalities for Conditional $p$-Means Given $\sigma$-Lattices , 1975 .

[28]  R. Phelps The gradient projection method using Curry's steplength , 1986 .

[29]  C. Baiocchi,et al.  Variational and quasivariational inequalities: Applications to free boundary problems , 1983 .

[30]  G. Isac,et al.  Projection methods, isotone projection cones, and the complementarity problem , 1990 .

[31]  R. Holmes Smoothness of certain metric projections on Hilbert space , 1973 .