Going Beyond the Threshold: Scattering and Blow-up in the Focusing NLS Equation

We study the focusing nonlinear Schrödinger equation $${i\partial_t u +\Delta u + |u|^{p-1}u=0}$$i∂tu+Δu+|u|p-1u=0, $${x \in \mathbb{R}^N}$$x∈RN in the L2-supercritical regime with finite energy and finite variance initial data. We investigate solutions above the energy (or mass–energy) threshold. In our first result, we extend the known scattering versus blow-up dichotomy above the mass–energy threshold for finite variance solutions in the energy-subcritical and energy-critical regimes, obtaining scattering and blow-up criteria for solutions with arbitrary large mass and energy. As a consequence, we characterize the behavior of the ground state initial data modulated by a quadratic phase. Our second result gives two blow up criteria, which are also applicable in the energy-supercritical NLS setting. We finish with various examples illustrating our results.

[1]  Takafumi Akahori,et al.  Blowup and Scattering problems for the Nonlinear Schr , 2010, 1006.1485.

[2]  R. Glassey On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations , 1977 .

[3]  J. Holmer,et al.  On Blow-up Solutions to the 3D Cubic Nonlinear Schrödinger Equation , 2010 .

[4]  Svetlana Roudenko,et al.  Blow-up criteria for the 3D cubic nonlinear Schrödinger equation , 2009, 0911.3955.

[5]  S. Roudenko,et al.  Threshold solutions for the focusing 3D cubic Schrödinger equation , 2008, 0806.1752.

[6]  J. Holmer,et al.  Divergence of Infinite-Variance Nonradial Solutions to the 3D NLS Equation , 2009, 0906.0203.

[7]  R. Killip,et al.  Energy-supercritical NLS: critical $\dot H^s$-bounds imply scattering , 2008 .

[8]  M. Beceanu A critical center‐stable manifold for Schrödinger's equation in three dimensions , 2012 .

[9]  C. Sulem,et al.  Numerical simulations of the energy- supercritical Nonlinear Schr\ , 2009, 0907.3130.

[10]  K. Nakanishi,et al.  Global dynamics above the ground state energy for the cubic NLS equation in 3D , 2010, Calculus of Variations and Partial Differential Equations.

[11]  F. Merle,et al.  Scattering for H^1/2 bounded solutions to the cubic, defocusing NLS in 3 dimensions , 2007, 0712.1834.

[12]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[13]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .

[14]  Birgit Schorkhuber,et al.  Stable blow up dynamics for energy supercritical wave equations , 2012, 1207.7046.

[15]  T. Cazenave,et al.  Scattering for the focusing energy-subcritical NLS , 2011, 1101.3058.

[16]  Cristi D. Guevara Global Behavior Of Finite Energy Solutions To The $d$-Dimensional Focusing Nonlinear Schr\"odinger Equation , 2012, 1203.6146.

[17]  Kun Zhao,et al.  A Note on a 3D Haptotaxis Model of Cancer Invasion , 2013 .

[18]  P. Lushnikov Dynamic criterion for collapse , 1995 .

[19]  Global Behavior Of Finite Energy Solutions To The Focusing Nonlinear Schrodinger Equation In d Dimension , 2011 .

[20]  T. Cazenave,et al.  Scattering for the focusing energy-subcritical nonlinear Schrödinger equation , 2011 .

[21]  Cristi D. Guevara,et al.  Scattering and Blow up for the Two Dimensional Focusing Quintic Nonlinear Schr\"odinger Equation , 2012, 1203.6089.

[22]  Frank Merle,et al.  Dynamic of Threshold Solutions for Energy-Critical NlS , 2007, 0710.5915.

[23]  F. Merle,et al.  Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications , 2008, 0810.4834.

[24]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[25]  F. Merle,et al.  Scattering for radial, bounded solutions of focusing supercritical wave equations , 2012, 1208.2158.

[26]  Carlos E. Kenig,et al.  Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case , 2006 .

[27]  Valeria Banica Remarks on the blow-up for the Schr\ , 2003 .

[28]  A Sharp Condition for Scattering of the Radial 3D Cubic Nonlinear Schrödinger Equation , 2007, math/0703235.

[29]  T. Cazenave,et al.  Rapidly decaying solutions of the nonlinear Schrödinger equation , 1992 .

[30]  J. Holmer,et al.  A solution to the focusing 3d NLS that blows up on a contracting sphere , 2012, 1212.6236.

[31]  R. Killip,et al.  Energy-Supercritical NLS: Critical Ḣ s -Bounds Imply Scattering , 2008, 0812.2084.

[32]  J. Holmer,et al.  Scattering for the non-radial 3D cubic nonlinear Schroedinger equation , 2007, 0710.3630.

[33]  T. Aubin Equations differentielles non lineaires et probleme de Yamabe concernant la courbure scalaire , 1976 .

[34]  S. Keraani On the Defect of Compactness for the Strichartz Estimates of the Schrödinger Equations , 2001 .

[35]  R. Killip,et al.  The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher , 2008, 0804.1018.

[36]  T. Cazenave Semilinear Schrodinger Equations , 2003 .