Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis

[1]  M. Shaul,et al.  Tumour-associated neutrophils in patients with cancer , 2019, Nature Reviews Clinical Oncology.

[2]  Yijuan Zhang,et al.  Macropinocytosis in Cancer: A Complex Signaling Network. , 2019, Trends in cancer.

[3]  J. Swinnen,et al.  Lipid metabolism in cancer cells under metabolic stress , 2019, British Journal of Cancer.

[4]  J. Massagué,et al.  Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization , 2019, eLife.

[5]  N. Hockstein,et al.  Fatty acid transporter 2 reprograms neutrophils in cancer , 2019, Nature.

[6]  A. Nomani,et al.  A lipase-independent pathway of lipid release and immune modulation by adipocytes , 2019, Science.

[7]  R. Coleman,et al.  Neutral Lipid Storage Diseases as Cellular Model to Study Lipid Droplet Function , 2019, Cells.

[8]  Michael S. Goldberg,et al.  Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice , 2018, Science.

[9]  R. White,et al.  Adipocyte-Derived Lipids Mediate Melanoma Progression via FATP Proteins. , 2018, Cancer discovery.

[10]  P. Bozza,et al.  Lipid Droplet, a Key Player in Host-Parasite Interactions , 2018, Front. Immunol..

[11]  G. Adema,et al.  Lipid Droplets as Immune Modulators in Myeloid Cells. , 2018, Trends in immunology.

[12]  J. Blenis,et al.  Unique Metabolic Adaptations Dictate Distal Organ-Specific Metastatic Colonization. , 2018, Cancer cell.

[13]  R. Zechner,et al.  Hypoxia-inducible lipid droplet-associated protein inhibits adipose triglyceride lipase , 2018, Journal of Lipid Research.

[14]  K. Gronert,et al.  Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense , 2018, PLoS pathogens.

[15]  T. Ho,et al.  Inhibition of intracellular lipolysis promotes human cancer cell adaptation to hypoxia , 2017, eLife.

[16]  B. Becher,et al.  Restoration of Natural Killer Cell Antimetastatic Activity by IL12 and Checkpoint Blockade. , 2017, Cancer research.

[17]  A. Orekhov,et al.  Mechanisms of foam cell formation in atherosclerosis , 2017, Journal of Molecular Medicine.

[18]  Thomas R. Cox,et al.  Pre-metastatic niches: organ-specific homes for metastases , 2017, Nature Reviews Cancer.

[19]  M. Prentki,et al.  Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. , 2017, JCI insight.

[20]  J. Asara,et al.  A relative quantitative positive/negative ion switching method for untargeted lipidomics via high resolution LC-MS/MS from any biological source , 2017, Metabolomics.

[21]  Pornpimol Charoentong,et al.  Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade , 2016, bioRxiv.

[22]  Camille Stephan-Otto Attolini,et al.  Targeting metastasis-initiating cells through the fatty acid receptor CD36 , 2016, Nature.

[23]  Xuetao Cao,et al.  Characteristics and Significance of the Pre-metastatic Niche. , 2016, Cancer cell.

[24]  Joerg M. Buescher,et al.  Breast Cancer-Derived Lung Metastases Show Increased Pyruvate Carboxylase-Dependent Anaplerosis. , 2016, Cell reports.

[25]  Russell G. Jones,et al.  Metabolic Plasticity as a Determinant of Tumor Growth and Metastasis. , 2016, Cancer research.

[26]  A. Hidalgo,et al.  Aging: A Temporal Dimension for Neutrophils. , 2016, Trends in immunology.

[27]  R. Weinberg,et al.  Neutrophils Suppress Intraluminal NK Cell-Mediated Tumor Cell Clearance and Enhance Extravasation of Disseminated Carcinoma Cells. , 2016, Cancer discovery.

[28]  J. Massagué,et al.  Metastatic colonization by circulating tumour cells , 2016, Nature.

[29]  I. Malanchi,et al.  Neutrophils support lung colonization of metastasis-initiating breast cancer cells , 2015, Nature.

[30]  S. Leung,et al.  PDK1-Dependent Metabolic Reprogramming Dictates Metastatic Potential in Breast Cancer. , 2015, Cell metabolism.

[31]  Edward A. Dennis,et al.  Eicosanoid storm in infection and inflammation , 2015, Nature Reviews Immunology.

[32]  J. Jonkers,et al.  IL17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis , 2015, Nature.

[33]  S. Tavazoie,et al.  Extracellular Metabolic Energetics Can Promote Cancer Progression , 2015, Cell.

[34]  V. Nizet,et al.  HIF transcription factors, inflammation, and immunity. , 2014, Immunity.

[35]  N. Møller,et al.  Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. , 2014, Journal of molecular endocrinology.

[36]  Christian M. Metallo,et al.  Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells , 2013, Nature.

[37]  D. Rosenberg,et al.  Multifaceted roles of PGE2 in inflammation and cancer , 2013, Seminars in Immunopathology.

[38]  Bradlee L. Heckmann,et al.  The G0/G1 switch gene 2 (G0S2): regulating metabolism and beyond. , 2013, Biochimica et biophysica acta.

[39]  P. Gleeson,et al.  Macropinocytosis: an endocytic pathway for internalising large gulps , 2011, Immunology and cell biology.

[40]  G. Mills,et al.  Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth , 2011, Nature Medicine.

[41]  R. DuBois,et al.  Eicosanoids and cancer , 2010, Nature Reviews Cancer.

[42]  Larry Norton,et al.  Latent bone metastasis in breast cancer tied to Src-dependent survival signals. , 2009, Cancer cell.

[43]  W. Born,et al.  IL‐17‐producing γδ T cells , 2009, European Journal of Immunology.

[44]  S. Abrams,et al.  Altered Immune Function during Long-Term Host-Tumor Interactions Can Be Modulated to Retard Autochthonous Neoplastic Growth1 , 2007, The Journal of Immunology.

[45]  S. Narumiya,et al.  Prostaglandin E Receptors* , 2007, Journal of Biological Chemistry.

[46]  M. Conese,et al.  Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[47]  Andy J. Minn,et al.  Genes that mediate breast cancer metastasis to lung , 2005, Nature.

[48]  I. Weissman,et al.  JunB Deficiency Leads to a Myeloproliferative Disorder Arising from Hematopoietic Stem Cells , 2004, Cell.

[49]  Bruce M. Spiegelman,et al.  Obesity and the Regulation of Energy Balance , 2001, Cell.

[50]  Tricia T. Nguyen,et al.  PTEN Deficiency and AMPK Activation Promote Nutrient Scavenging and Anabolism in Prostate Cancer Cells. , 2018, Cancer discovery.

[51]  S. Abrams,et al.  Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy , 2014, Cancer Immunology, Immunotherapy.

[52]  R. Deberardinis,et al.  The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. , 2008, Cell metabolism.