An autocorrelation and a discrete spectrum for dynamical systems on metric spaces

We study dynamical systems $(X,G,m)$ with a compact metric space $X$ , a locally compact, $\unicode[STIX]{x1D70E}$ -compact, abelian group $G$ and an invariant Borel probability measure $m$ on $X$ . We show that such a system has a discrete spectrum if and only if a certain space average over the metric is a Bohr almost periodic function. In this way, this average over the metric plays, for general dynamical systems, a similar role to that of the autocorrelation measure in the study of aperiodic order for special dynamical systems based on point sets.

[1]  A. Vershik Scaling entropy and automorphisms with purely point spectrum , 2010 .

[2]  G. Fuhrmann,et al.  Amorphic complexity , 2015, 1503.01036.

[3]  D. Lenz Aperiodic order via dynamical systems: Diffraction for sets of finite local complexity , 2007, 0712.1323.

[4]  E. Glasner,et al.  Isomorphic extensions and applications , 2015, 1502.06999.

[5]  Michael Baake,et al.  What is Aperiodic Order , 2002, 1512.05104.

[6]  Jean-Baptiste Gouéré Quasicrystals and Almost Periodicity , 2002 .

[7]  D. Lenz Continuity of Eigenfunctions of Uniquely Ergodic Dynamical Systems and Intensity of Bragg Peaks , 2006, math-ph/0608026.

[8]  M. Baake,et al.  Spectral notions of aperiodic order , 2016, 1601.06629.

[9]  Michael Baake,et al.  Aperiodic Order. Vol 1. A Mathematical Invitation , 2013 .

[10]  DANIEL LENZ,et al.  Stationary processes and pure point diffraction , 2011, Ergodic Theory and Dynamical Systems.

[11]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[12]  B. Marcus,et al.  Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems , 2015, Discrete & Continuous Dynamical Systems - A.

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Scaling entropy and automorphisms with purely point spectrum ∗ , 2010 .

[15]  Felipe García-Ramos Weak forms of topological and measure-theoretical equicontinuity: relationships with discrete spectrum and sequence entropy , 2016, Ergodic Theory and Dynamical Systems.

[16]  B. Solomyak,et al.  Spectrum of dynamical systems arising from Delone sets , 1998 .

[17]  Christian Berg,et al.  Potential Theory on Locally Compact Abelian Groups , 1975 .

[18]  D. Lenz,et al.  Pure Point spectrum for measure dynamical systems on locally compact Abelian groups , 2007, 0704.2498.

[19]  M. Baake,et al.  Weighted Dirac combs with pure point diffraction , 2002, math/0203030.

[20]  Boris Solomyak,et al.  Pure Point Dynamical and Diffraction Spectra , 2002, 0910.4809.

[21]  Boris Solomyak,et al.  Dynamics of self-similar tilings , 1997, Ergodic Theory and Dynamical Systems.

[22]  L. H. Loomis An Introduction to Abstract Harmonic Analysis , 1953 .

[23]  G. Folland A course in abstract harmonic analysis , 1995 .

[24]  Jiri Patera Quasicrystals and Discrete Geometry , 1998 .

[25]  E. Robinson,et al.  The dynamical properties of Penrose tilings , 1996 .

[26]  Johannes Kellendonk,et al.  Mathematics of aperiodic order , 2015 .

[27]  S. Dworkin Spectral theory and x-ray diffraction , 1993 .

[28]  M. Baake,et al.  Institute for Mathematical Physics Dynamical Systems on Translation Bounded Measures: Pure Point Dynamical and Diffraction Spectra Dynamical Systems on Translation Bounded Measures: Pure Point Dynamical and Diffraction Spectra , 2022 .