G-Band Radar for Humidity and Cloud Remote Sensing
暂无分享,去创建一个
Ken B. Cooper | Matthew Lebsock | Jose V. Siles | Maria Alonso-delPino | Okan Yurduseven | Chaitali Parashare | Raquel Rodriguez Monje | Richard J. Roy | Luis Millán | Robert J. Dengler | M. Alonso-delPino | O. Yurduseven | M. Lebsock | K. Cooper | C. Parashare | R. Dengler | R. Monje | J. Siles | L. Millán | R. Roy
[1] A. Tessmann,et al. 300 GHz broadband power amplifier with 508 GHz gain-bandwidth product and 8 dBm output power , 2019, 2019 IEEE MTT-S International Microwave Symposium (IMS).
[2] J. B. Mead,et al. Remote Sensing of Clouds and Fog with a 1.4-mm Radar , 1989 .
[3] Zach Griffith,et al. 180–265 GHz, 17–24 dBm output power broadband, high-gain power amplifiers in InP HBT , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).
[4] Seong-Hwoon Kim,et al. ViSAR: A 235 GHz radar for airborne applications , 2018, 2018 IEEE Radar Conference (RadarConf18).
[5] Ram M. Narayanan,et al. Radar Backscatter Characteristics Of Trees At 215 GHz , 1988, International Geoscience and Remote Sensing Symposium, 'Remote Sensing: Moving Toward the 21st Century'..
[6] Ken B. Cooper,et al. Boundary-layer water vapor profiling using differential absorption radar , 2018, Atmospheric Measurement Techniques.
[7] Ken B. Cooper,et al. Imaging, Doppler, and spectroscopic radars from 95 to 700 GHz , 2016, SPIE Defense + Security.
[8] N. Livesey,et al. Differential absorption radar techniques: water vapor retrievals , 2016 .
[9] Goutam Chattopadhyay,et al. Submillimeter-Wave Radar: Solid-State System Design and Applications , 2014, IEEE Microwave Magazine.
[10] H.B. Wallace,et al. Standoff Detection of Weapons and Contraband in the 100 GHz to 1 THz Region , 2007, IEEE Transactions on Antennas and Propagation.
[11] William R. Deal,et al. A 666 GHz demonstration crosslink with 9.5 Gbps data rate , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).
[12] Pavlos Kollias,et al. G band atmospheric radars: new frontiers in cloud physics , 2014 .
[13] Philipp Hillger,et al. Terahertz Imaging and Sensing Applications With Silicon-Based Technologies , 2019, IEEE Transactions on Terahertz Science and Technology.
[14] Kamal Sarabandi,et al. Microwave Radar and Radiometric Remote Sensing , 2013 .
[15] W. Deal,et al. Recent progress in scaling InP HEMT TMIC technology to 850 GHz , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).
[16] Michael J. Schwartz,et al. The clear-sky unpolarized forward model for the EOS aura microwave limb sounder (MLS) , 2006, IEEE Transactions on Geoscience and Remote Sensing.
[17] Steven C. Reising,et al. InP HEMT low-noise amplifier-based millimeter-wave radiometers from 90 to 180 GHz with internal calibration for remote sensing of atmospheric wet-path delay , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.
[19] Mau-Chung Frank Chang,et al. A 177–205 GHz 249 mW CMOS-Based Integer-N Frequency Synthesizer Module for Planetary Exploration , 2018, IEEE Transactions on Terahertz Science and Technology.
[20] M. Lebsock,et al. Validation of a G-Band Differential Absorption Cloud Radar for Humidity Remote Sensing , 2020 .
[21] Kentaroh Suzuki,et al. The feasibility of water vapor sounding of the cloudy boundary layer using a differential absorption radar technique , 2015 .
[22] Nuria Llombart,et al. A Grating-Based Circular Polarization Duplexer for Submillimeter-Wave Transceivers , 2012, IEEE Microwave and Wireless Components Letters.
[23] Nuria Llombart,et al. THz Imaging Radar for Standoff Personnel Screening , 2011, IEEE Transactions on Terahertz Science and Technology.
[24] Todd Gaier,et al. Low noise amplifier receivers for millimeter wave atmospheric remote sensing , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.
[25] Goutam Chattopadhyay,et al. A New Generation of Room-Temperature Frequency-Multiplied Sources With up to 10× Higher Output Power in the 160-GHz–1.6-THz Range , 2018, IEEE Transactions on Terahertz Science and Technology.
[26] Simone Tanelli,et al. Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz , 2018, IEEE Geoscience and Remote Sensing Letters.
[27] G. Chattopadhyay,et al. A 183-GHz InP/CMOS-Hybrid Heterodyne-Spectrometer for Spaceborne Atmospheric Remote Sensing , 2019, IEEE Transactions on Terahertz Science and Technology.
[28] M. Dixon,et al. A wing pod-based millimeter wavelength airborne cloud radar , 2015 .
[29] M. Skolnik,et al. Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.