Object-Based Reverberation for Spatial Audio

Object-based audio is gaining momentum as a means for future audio content to be more immersive, interactive, and accessible. Recent standardization developments make recommendations for object formats, however, the capture, production and reproduction of reverberation is an open issue. In this paper, parametric approaches for capturing, representing, editing, and rendering reverberation over a 3D spatial audio system are reviewed. A framework is proposed for a Reverberant Spatial Audio Object (RSAO), which synthesizes reverberation inside an audio object renderer. An implementation example of an object scheme utilising the RSAO framework is provided, and supported with listening test results, showing that: the approach correctly retains the sense of room size compared to a convolved reference; editing RSAO parameters can alter the perceived room size and source distance; and, format-agnostic rendering can be exploited to alter listener envelopment.

[1]  Frank Melchior,et al.  On object based audio with reverberation , 2016 .

[2]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[3]  Jyri Huopaniemi,et al.  Advanced AudioBIFS: virtual acoustics modeling in MPEG-4 scene description , 2004, IEEE Transactions on Multimedia.

[4]  Frank Melchior,et al.  Spatial Sound With Loudspeakers and Its Perception: A Review of the Current State , 2013, Proceedings of the IEEE.

[5]  Ville Pulkki,et al.  Spatial Sound Reproduction with Directional Audio Coding , 2007 .

[6]  M. Vorländer Simulation of the transient and steady‐state sound propagation in rooms using a new combined ray‐tracing/image‐source algorithm , 1989 .

[7]  Julia Eichmann Concert Halls And Opera Houses Music Acoustics And Architecture , 2016 .

[8]  Jonathan S. Abel,et al.  A Simple, Robust Measure of Reverberation Echo Density , 2006 .

[9]  Juha Merimaa,et al.  Spatial Impulse Response Rendering I: Analysis and Synthesis , 2005 .

[10]  Stefan Weinzierl,et al.  Perceptual Evaluation of Model- and Signal-Based Predictors of the Mixing Time in Binaural Room Impulse Responses * , 2012 .

[11]  Frank Melchior,et al.  Design and Implementation of an Interactive Room Simulation for Wave Field Synthesis , 2010 .

[12]  S. Bech,et al.  Timbral aspects of reproduced sound in small rooms. I. , 1995, The Journal of the Acoustical Society of America.

[13]  F. Melchior Investigations on spatial sound design based on measured room impulse responses , 2011 .

[14]  Philip J. B. Jackson,et al.  Estimation of Room Reflection Parameters for a Reverberant Spatial Audio Object , 2015 .

[15]  J. Huopaniemi,et al.  AudioBIFS : Describing Audio Scenes with the MPEG-4 Multimedia Standard , 1999 .

[16]  Diemer de Vries,et al.  Parameterization and Reproduction of Concert Hall Acoustics Measured with a Circular Microphone Array , 2002 .

[17]  Jan Plogsties,et al.  MPEG-H 3D Audio—The New Standard for Coding of Immersive Spatial Audio , 2015, IEEE Journal of Selected Topics in Signal Processing.

[18]  Philip J. B. Jackson,et al.  Visualization of Compact Microphone Array Room Impulse Responses , 2015 .

[19]  Vesa Välimäki,et al.  More Than 50 Years of Artificial Reverberation , 2016 .

[20]  Ian Burnett,et al.  An XML-based 3D Audio Scene Metadata Scheme , 2004 .

[21]  Günther Theile,et al.  Multichannel Natural Recording Based on Psychoacoustic Principles , 2000 .

[22]  Barry A. Blesser An Interdisciplinary Synthesis of Reverberation Viewpoints , 2001 .

[23]  Juha Merimaa,et al.  Spatial Impulse Response Rendering II: Reproduction of Diffuse Sound and Listening Tests , 2006 .

[24]  Tim Brookes,et al.  Production and Reproduction of Program Material for a Variety of Spatial Audio Formats , 2015 .

[25]  Neofytos Kaplanis,et al.  Perception of reverberation in small rooms : a literature study , 2014 .

[26]  Jean-Marc Jot,et al.  Efficient models for reverberation and distance rendering in computer music and virtual audio reality , 1997, ICMC.

[27]  Gaël Richard,et al.  Late Reverberation Synthesis: From Radiance Transfer to Feedback Delay Networks , 2015, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[28]  Jean-Marc Jot,et al.  An analysis/synthesis approach to real-time artificial reverberation , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[29]  Koichiro Hiyama,et al.  Approach and Mixing Technique for Natural Sound Recording of Multichannel Audio , 2001 .

[30]  Helmut Wittek,et al.  Principles in Surround Recordings with Height , 2011 .

[31]  Philip J. B. Jackson,et al.  Acoustic Reflector Localization: Novel Image Source Reversion and Direct Localization Methods , 2016, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[32]  E. M. Hulsebos Auralization using Wave Field Synthesis , 2004 .

[33]  Ernst F Schroeder,et al.  New and Advanced Features for Audio Presentation in the MPEG-4 Standard , 2004 .

[34]  Archontis Politis,et al.  Sector-Based Parametric Sound Field Reproduction in the Spherical Harmonic Domain , 2015, IEEE Journal of Selected Topics in Signal Processing.

[35]  Jean-Marc Jot,et al.  Rendering MPEG-4 AABIFS content through a low-level cross-platform 3D audio API , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[36]  Jan C. Schacher,et al.  The Spatial Sound Description Interchange Format: Principles, Specification, and Examples , 2013, Computer Music Journal.

[37]  Russell Mason Installation of a Flexible 3D Audio Reproduction System into a Standardized Listening Room , 2016 .

[38]  Vesa Välimäki,et al.  Fifty Years of Artificial Reverberation , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[39]  Thomas Sporer,et al.  On the perception of apparent source width and listener envelopment in wave field synthesis , 2013, 2013 Fifth International Workshop on Quality of Multimedia Experience (QoMEX).

[40]  Jens Spille,et al.  An Object-Based Audio System for Interactive Broadcasting , 2014 .

[41]  Frank Melchior,et al.  Platform Independent Audio , 2013 .

[42]  Tapio Lokki,et al.  Spatial Decomposition Method for Room Impulse Responses , 2013 .

[43]  Ville Pulkki,et al.  Virtual Sound Source Positioning Using Vector Base Amplitude Panning , 1997 .

[44]  Olivier Warusfel,et al.  Parametric control of convolution based room simulators , 2013 .

[45]  Tapio Lokki,et al.  Adjusting The Perceived Distance Of Virtual Speech Sources By Modifying Binaural Room Impulse Responses , 2013 .

[46]  Archontis Politis,et al.  Parametric Spatial Audio Effects , 2012 .

[47]  Jan Plogsties,et al.  Design, Coding and Processing of Metadata for Object-Based Interactive Audio , 2014 .

[48]  Ulli Scuda,et al.  Producing Interactive Immersive Sound for MPEG-H: A Field Test for Sports Broadcasting , 2014 .

[49]  A. Bronkhorst,et al.  Auditory distance perception in humans : A summary of past and present research , 2005 .

[50]  Tapio Lokki,et al.  Creating Interactive Virtual Acoustic Environments , 1999 .

[51]  Christopher Gribben,et al.  On the optimum microphone array configuration for height channels , 2013 .

[52]  Floyd E. Toole,et al.  The Detection of Reflections in Typical Rooms , 1989 .

[53]  Graham Thomas,et al.  State‐of‐the‐Art and Challenges in Media Production, Broadcast and Delivery , 2014 .

[54]  Manfred R. Schroeder,et al.  Statistical parameters of the frequency response curves of large rooms , 1987 .