Advanced particle swarm optimisation algorithms for parameter estimation of a single-phase induction machine

This paper proposes a new parameter estimation approach for a single-phase induction machine (SPIM) whose parameters are usually obtained using several traditional techniques such as the DC, no-load, load and locked-rotor tests. The proposal is based on using two advanced particle swarm optimisation (PSO) algorithms. In the PSO algorithm, the inertia weight, cognitive and social parameters and two independent random sequences are the main parameters which affect the search characteristics and convergence capability, as well as the solution quality in each application. Two advanced PSO algorithms, known as the dynamic particle swarm optimisation (dynamic PSO) and the chaos particle swarm optimisation (chaos PSO) algorithms modify the algorithm parameters to improve the performance of the standard PSO algorithm. The algorithms use the experimental measurements of the currents and active powers in the SPIM main and auxiliary windings as the inputs to the parameter estimator. The experimental results obtained...

[1]  Robert D. Laramore,et al.  An Introduction to Electrical Machines and Transformers , 1981 .

[2]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[3]  S. D. Umans Steady-state, lumped-parameter model for capacitor-run, single-phase induction motors , 1994 .

[4]  F. S. van der Merwe,et al.  A study of methods to measure the parameters of single-phase induction motors , 1995 .

[5]  B. Alatas,et al.  Chaos embedded particle swarm optimization algorithms , 2009 .

[6]  A. Keyhani,et al.  Induction motor parameter identification from operating data for electric drive applications , 1999, Gateway to the New Millennium. 18th Digital Avionics Systems Conference. Proceedings (Cat. No.99CH37033).

[7]  Bo Liu,et al.  Improved particle swarm optimization combined with chaos , 2005 .

[8]  Yong Feng,et al.  Chaotic Inertia Weight in Particle Swarm Optimization , 2007, Second International Conference on Innovative Computing, Informatio and Control (ICICIC 2007).

[9]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[10]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[11]  Xiaojing Hao,et al.  A hybrid particle swarm algorithm with embedded chaotic search , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[12]  Rasmus K. Ursem,et al.  Parameter identification of induction motors using stochastic optimization algorithms , 2004, Appl. Soft Comput..

[13]  Elijah Ehiagwina Omizegba,et al.  Fuzzy logic controller parameter tuning using particle swarm algorithm , 2009, Int. J. Model. Identif. Control..

[14]  Hisham M. Soliman,et al.  Robust controller design for active suspensions using particle swarm optimisation , 2008, Int. J. Model. Identif. Control..

[15]  O. Omozusi,et al.  Parameter estimation of single-phase induction machines , 2001 .

[16]  Yong Feng,et al.  Comparing with Chaotic Inertia Weights in Particle Swarm Optimization , 2007, 2007 International Conference on Machine Learning and Cybernetics.

[17]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[18]  O. Ojo,et al.  Parameter estimation of single-phase induction machines , 2001, Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248).