Affine Invariant Multivariate One‐Sample Sign Tests

SUMMARY Brown and Hettmansperger introduced an affine invariant bivariate analogue of the sign test based on the generalized median of Oja. In this paper its general multivariate extension is presented. The proposed multivariate permutation or sign change test is affine invariant with an easily computable covariance matrix. For elliptic distributions the proposed test and Randles's test are asymptotically equivalent. Formulae for calculating asymptotic relative efficiencies of the proposed test and the Oja multivariate median are given. Lower bounds for the efficiencies of the new test (and the Randles test) relative to the classical Hotelling test are established for elliptic alternatives and for unimodal elliptic alternatives. Relative efficiencies under multivariate t-distributions are also tabulated. The theory is illustrated by a simple example.

[1]  F. Graybill,et al.  Matrices with Applications in Statistics. , 1984 .

[2]  I. Blumen,et al.  A New Bivariate Sign Test , 1958 .

[3]  J. Wolfowitz,et al.  Introduction to the Theory of Statistics. , 1951 .

[4]  J. S. Maritz Distribution-Free Statistical Methods , 1981 .

[5]  K. Mardia Statistics of Directional Data , 1972 .

[6]  S. R. Searle,et al.  The theory of linear models and multivariate analysis , 1981 .

[7]  P. Chaudhuri,et al.  Sign Tests in Multidimension: Inference Based on the Geometry of the Data Cloud , 1993 .

[8]  Thomas P. Hettmansperger,et al.  Statistical inference based on ranks , 1985 .

[9]  Thomas P. Hettmansperger,et al.  Rank-based inference for linear models: asymmetric errors , 1989 .

[10]  Hannu Oja,et al.  On Certain Bivariate Sign Tests and Medians , 1992 .

[11]  V. Barnett The Ordering of Multivariate Data , 1976 .

[12]  H. Oja,et al.  The Oja Bivariate Median , 1992 .

[13]  H. Oja Descriptive Statistics for Multivariate Distributions , 1983 .

[14]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[15]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[16]  Hannu Oja,et al.  Bivariate Sign Tests , 1989 .

[17]  J. L. Hodges,et al.  A Bivariate Sign Test , 1955 .

[18]  B. M. Brown,et al.  Affine Invariant Rank Methods in the Bivariate Location Model , 1987 .

[19]  P. Sen,et al.  Theory of rank tests , 1969 .

[20]  P. Sen,et al.  Nonparametric methods in multivariate analysis , 1974 .

[21]  Calyampudi R. Rao,et al.  Tests of significance in multivariate analysis. , 1948, Biometrika.

[22]  H. Oja,et al.  Asymptotic Properties of the Generalized Median in the Case of Multivariate Normality , 1985 .

[23]  Ronald H. Randles,et al.  Multivariate rank tests for the two-sample location problem , 1990 .

[24]  Kanti V. Mardia,et al.  The effect of nonnormality on some multivariate tests and robustness to nonnormality in the linear model , 1971 .

[25]  B. M. Brown,et al.  Statistical Uses of the Spatial Median , 1983 .

[26]  Regina Y. Liu On a Notion of Data Depth Based on Random Simplices , 1990 .

[27]  R. Randles A Distribution-Free Multivariate Sign Test Based on Interdirections , 1989 .

[28]  Jana Jurečková,et al.  Asymptotic Linearity of a Rank Statistic in Regression Parameter , 1969 .