Uniquely presented finitely generated commutative monoids

A finitely generated commutative monoid is uniquely presented if it has a unique minimal presentation. We give necessary and sufficient conditions for finitely generated, combinatorially finite, cancellative, commutative monoids to be uniquely presented. We use the concept of gluing to construct commutative monoids with this property. Finally, for some relevant families of numerical semigroups we describe the elements that are uniquely presented.

[1]  A. Campillo,et al.  L'idéal d'un semi-groupe de type fini , 1993 .

[2]  W. Fulton Introduction to Toric Varieties. , 1993 .

[3]  Apostolos Thoma,et al.  Minimal systems of binomial generators and the indispensable complex of a toric ideal , 2006, math/0607249.

[4]  Jean Dieudonne Recent Developments in Mathematics , 1964 .

[5]  José Carlos Rosales An Algorithmic Method to Compute a Minimal Relation for any numerical Semigroup , 1996, Int. J. Algebra Comput..

[6]  J. Mataix,et al.  The Influence of Dietary Fat Source (sunflower Oil or Olive Oil) on Ldl Composition and Serum Lipid Levels in Miniature Swine (sus Serofa) , 2022 .

[7]  J. C. Rosales,et al.  Numerical semigroups generated by intervals , 1999 .

[8]  Alfred Geroldinger,et al.  Non-Unique Factorizations : Algebraic, Combinatorial and Analytic Theory , 2006 .

[9]  William Fulton,et al.  Introduction to Toric Varieties. (AM-131) , 1993 .

[10]  L. Rédei,et al.  The theory of finitely generated commutative semigroups , 1965 .

[11]  Alberto Vigneron-Tenorio,et al.  Indispensable binomials in semigroup ideals , 2010 .

[12]  Pedro A. García-Sánchez,et al.  Finitely generated commutative monoids , 1999 .

[13]  C. Marijuán,et al.  Minimal systems of generators for ideals of semigroups , 1998 .

[14]  C. Delorme,et al.  Sous-monoïdes d’intersection complète de $N$ , 1976 .

[15]  On numerical semigroups , 1996 .

[16]  A. Takemura,et al.  Some characterizations of minimal Markov basis for sampling from discrete conditional distributions , 2004 .

[17]  J Bertin,et al.  Semi-groupes d'entiers et application aux branches , 1977 .

[18]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[19]  Jürgen Herzog,et al.  Generators and relations of abelian semigroups and semigroup rings , 1970 .

[21]  W. Bruns,et al.  Cohen-Macaulay rings , 1993 .

[22]  Satoshi Aoki,et al.  Indispensable monomials of toric ideals and Markov bases , 2005, J. Symb. Comput..

[23]  Pedro A. García-Sánchez,et al.  On Presentations of Commutative Monoids , 1999, Int. J. Algebra Comput..

[24]  L. O'Carroll GRÖBNER BASES AND CONVEX POLYTOPES (University Lecture Series 8) , 1997 .