Lecture notes on Gaussian multiplicative chaos and Liouville Quantum Gravity
暂无分享,去创建一个
[1] C. Newman,et al. Planar Ising magnetization field I. Uniqueness of the critical scaling limit , 2012, 1205.6610.
[2] V. Vargas,et al. Multidimensional Multifractal Random Measures , 2010 .
[3] Juhan Aru,et al. Two Perspectives of the 2D Unit Area Quantum Sphere and Their Equivalence , 2015, 1512.06190.
[4] D. Jakobson,et al. Gaussian Free Fields and KPZ Relation in $${\mathbb{R}^4}$$R4 , 2014 .
[5] Joshua D. Qualls. Lectures on Conformal Field Theory , 2015, 1511.04074.
[6] Cédric Boutillier,et al. The critical Z-invariant Ising model via dimers: the periodic case , 2008, 0812.3848.
[7] Liouville Field Theory — A decade after the revolution , 2004, hep-th/0402009.
[8] Thomas Madaule. Maximum of a log-correlated Gaussian field , 2013, 1307.1365.
[9] Vincent Vargas,et al. Gaussian multiplicative chaos and applications: A review , 2013, 1305.6221.
[10] Maury Bramson,et al. Convergence in Law of the Maximum of the Two‐Dimensional Discrete Gaussian Free Field , 2013, 1301.6669.
[11] S. Sheffield,et al. Liouville quantum gravity as a mating of trees , 2014, 1409.7055.
[12] B. Mandelbrot. Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence , 1972 .
[13] Raoul Robert,et al. A stochastic representation of the local structure of turbulence , 2009, 0906.5225.
[14] V. Vargas,et al. Glassy phase and freezing of log-correlated Gaussian potentials , 2013, 1310.5574.
[15] A. Kolmogorov. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.
[16] Alberto Rosso,et al. Freezing transition in decaying Burgers turbulence and random matrix dualities , 2010, 1004.5025.
[17] Nathanael Berestycki,et al. An elementary approach to Gaussian multiplicative chaos , 2015, 1506.09113.
[18] S. Smirnov,et al. Universality in the 2D Ising model and conformal invariance of fermionic observables , 2009, 0910.2045.
[19] V. Vargas,et al. KPZ formula for log-infinitely divisible multifractal random measures , 2008, 0807.1036.
[20] M. Biskup,et al. Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field , 2013, 1306.2602.
[21] Xia Hua. Thick Points of the Gaussian Free Field , 2009 .
[22] S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.
[23] Scott Sheffield,et al. Liouville quantum gravity and KPZ , 2008, 0808.1560.
[24] S. Smirnov. Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model , 2007, 0708.0039.
[25] A. Polyakov,et al. Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .
[26] Barry Simon,et al. The P(φ)[2] Euclidean (quantum) field theory , 1974 .
[27] D. Carpentier,et al. Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[28] Daryl J. Daley,et al. An Introduction to the Theory of Point Processes , 2013 .
[29] Emmanuel Bacry,et al. Continuous cascade models for asset returns , 2008 .
[30] Oded Schramm,et al. Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.
[31] James T. Gill,et al. On the Riemann surface type of Random Planar Maps , 2011, 1101.1320.
[32] Cédric Boutillier,et al. The Critical Z-Invariant Ising Model via Dimers: Locality Property , 2009, 0902.1882.
[33] Julien Dubédat. Exact bosonization of the Ising model , 2011, 1112.4399.
[34] Bergfinnur Durhuus,et al. Quantum Geometry: A Statistical Field Theory Approach , 1997 .
[35] A. Polyakov. Quantum Geometry of Bosonic Strings , 1981 .
[36] Clément Hongler,et al. The energy density in the planar Ising model , 2010, 1008.2645.
[37] Alexander M. Polyakov,et al. Fractal Structure of 2D Quantum Gravity , 1988 .
[38] Y. Fyodorov,et al. Statistical mechanics of logarithmic REM: duality, freezing and extreme value statistics of 1/f noises generated by Gaussian free fields , 2009, 0907.2359.
[39] A. Shamov. On Gaussian multiplicative chaos , 2014, 1407.4418.
[40] J. Kahane. Sur le chaos multiplicatif , 1985 .
[41] N. Curien. A Glimpse of the Conformal Structure of Random Planar Maps , 2013, 1308.1807.
[42] R. Robert,et al. Gaussian multiplicative chaos revisited , 2008, 0807.1030.
[43] J. Bouchaud,et al. Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential , 2008, 0805.0407.
[44] Clément Hongler,et al. Conformal invariance of spin correlations in the planar Ising model , 2012, 1202.2838.
[45] V. Vargas,et al. Liouville Quantum Gravity on the Riemann Sphere , 2014, Communications in Mathematical Physics.
[46] R. Høegh-Krohn,et al. A general class of quantum fields without cut-offs in two space-time dimensions , 1971 .
[47] E. Saksman,et al. The uniqueness of the Gaussian multiplicative chaos revisited , 2015, 1506.05099.
[48] C. Webb,et al. The characteristic polynomial of a random unitary matrix and Gaussian multiplicative chaos - The $L^2$-phase , 2014, 1410.0939.