Lecture notes on Gaussian multiplicative chaos and Liouville Quantum Gravity

The purpose of these notes, based on a course given by the second author at Les Houches summer school, is to explain the probabilistic construction of Polyakov's Liouville quantum gravity using the theory of Gaussian multiplicative chaos. In particular, these notes contain a detailed description of the so-called Liouville measures of the theory and their conjectured relation to the scaling limit of large planar maps properly embedded in the sphere. These notes are rather short and require no prior knowledge on the topic.

[1]  C. Newman,et al.  Planar Ising magnetization field I. Uniqueness of the critical scaling limit , 2012, 1205.6610.

[2]  V. Vargas,et al.  Multidimensional Multifractal Random Measures , 2010 .

[3]  Juhan Aru,et al.  Two Perspectives of the 2D Unit Area Quantum Sphere and Their Equivalence , 2015, 1512.06190.

[4]  D. Jakobson,et al.  Gaussian Free Fields and KPZ Relation in $${\mathbb{R}^4}$$R4 , 2014 .

[5]  Joshua D. Qualls Lectures on Conformal Field Theory , 2015, 1511.04074.

[6]  Cédric Boutillier,et al.  The critical Z-invariant Ising model via dimers: the periodic case , 2008, 0812.3848.

[7]  Liouville Field Theory — A decade after the revolution , 2004, hep-th/0402009.

[8]  Thomas Madaule Maximum of a log-correlated Gaussian field , 2013, 1307.1365.

[9]  Vincent Vargas,et al.  Gaussian multiplicative chaos and applications: A review , 2013, 1305.6221.

[10]  Maury Bramson,et al.  Convergence in Law of the Maximum of the Two‐Dimensional Discrete Gaussian Free Field , 2013, 1301.6669.

[11]  S. Sheffield,et al.  Liouville quantum gravity as a mating of trees , 2014, 1409.7055.

[12]  B. Mandelbrot Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence , 1972 .

[13]  Raoul Robert,et al.  A stochastic representation of the local structure of turbulence , 2009, 0906.5225.

[14]  V. Vargas,et al.  Glassy phase and freezing of log-correlated Gaussian potentials , 2013, 1310.5574.

[15]  A. Kolmogorov A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.

[16]  Alberto Rosso,et al.  Freezing transition in decaying Burgers turbulence and random matrix dualities , 2010, 1004.5025.

[17]  Nathanael Berestycki,et al.  An elementary approach to Gaussian multiplicative chaos , 2015, 1506.09113.

[18]  S. Smirnov,et al.  Universality in the 2D Ising model and conformal invariance of fermionic observables , 2009, 0910.2045.

[19]  V. Vargas,et al.  KPZ formula for log-infinitely divisible multifractal random measures , 2008, 0807.1036.

[20]  M. Biskup,et al.  Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field , 2013, 1306.2602.

[21]  Xia Hua Thick Points of the Gaussian Free Field , 2009 .

[22]  S. Sheffield Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.

[23]  Scott Sheffield,et al.  Liouville quantum gravity and KPZ , 2008, 0808.1560.

[24]  S. Smirnov Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model , 2007, 0708.0039.

[25]  A. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .

[26]  Barry Simon,et al.  The P(φ)[2] Euclidean (quantum) field theory , 1974 .

[27]  D. Carpentier,et al.  Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[29]  Emmanuel Bacry,et al.  Continuous cascade models for asset returns , 2008 .

[30]  Oded Schramm,et al.  Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.

[31]  James T. Gill,et al.  On the Riemann surface type of Random Planar Maps , 2011, 1101.1320.

[32]  Cédric Boutillier,et al.  The Critical Z-Invariant Ising Model via Dimers: Locality Property , 2009, 0902.1882.

[33]  Julien Dubédat Exact bosonization of the Ising model , 2011, 1112.4399.

[34]  Bergfinnur Durhuus,et al.  Quantum Geometry: A Statistical Field Theory Approach , 1997 .

[35]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[36]  Clément Hongler,et al.  The energy density in the planar Ising model , 2010, 1008.2645.

[37]  Alexander M. Polyakov,et al.  Fractal Structure of 2D Quantum Gravity , 1988 .

[38]  Y. Fyodorov,et al.  Statistical mechanics of logarithmic REM: duality, freezing and extreme value statistics of 1/f noises generated by Gaussian free fields , 2009, 0907.2359.

[39]  A. Shamov On Gaussian multiplicative chaos , 2014, 1407.4418.

[40]  J. Kahane Sur le chaos multiplicatif , 1985 .

[41]  N. Curien A Glimpse of the Conformal Structure of Random Planar Maps , 2013, 1308.1807.

[42]  R. Robert,et al.  Gaussian multiplicative chaos revisited , 2008, 0807.1030.

[43]  J. Bouchaud,et al.  Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential , 2008, 0805.0407.

[44]  Clément Hongler,et al.  Conformal invariance of spin correlations in the planar Ising model , 2012, 1202.2838.

[45]  V. Vargas,et al.  Liouville Quantum Gravity on the Riemann Sphere , 2014, Communications in Mathematical Physics.

[46]  R. Høegh-Krohn,et al.  A general class of quantum fields without cut-offs in two space-time dimensions , 1971 .

[47]  E. Saksman,et al.  The uniqueness of the Gaussian multiplicative chaos revisited , 2015, 1506.05099.

[48]  C. Webb,et al.  The characteristic polynomial of a random unitary matrix and Gaussian multiplicative chaos - The $L^2$-phase , 2014, 1410.0939.