Photonic Luminescent Solar Concentrator Design for High Efficiency, Low Cost Multijunction Photovoltaics

Despite the extraordinary advances in solar cell efficiency in laboratory settings, the deployment of solar cells continues to be limited to low efficiency (<25%) silicon cells because of cost. In this work, we take advantage of the extraordinary optical properties afforded by nanophotonic structures to create a photonic luminescent solar concentrator for an InGaP-Si multijunction concentrator cell. Finite difference time domain (FDTD) simulations demonstrated a concentrator that could effectively capture, downconvert, and guide concentrated light to an InGaP subcell while still transmitting longer wavelengths to a Si subcell. We fabricated the photonic luminescent solar concentrator, which was comprised of CdSe/CdS quantum dots embedded within alternating layers of Si3N4 and SiO2, and experimentally verified the optical performance, showing a 40% increase in light guiding and a significant reduction in reabsorption losses in the plane of the luminescent concentrator as compared to traditional designs. Finally, we utilized modified detailed balance calculations that accounted for cell and optical losses and showed >30% efficiencies are possible with this design, demonstrating the potential to meet the demands for high efficiency, inexpensive solar modules.

[1]  M. Green,et al.  Solar cell efficiency tables (version 59) , 2021, Progress in Photovoltaics: Research and Applications.

[2]  R. Margolis,et al.  Photovoltaic (PV) Module Technologies: 2020 Benchmark Costs and Technology Evolution Framework Results , 2021 .

[3]  David R. Needell,et al.  Unlocking Higher Power Efficiencies in Luminescent Solar Concentrators through Anisotropic Luminophore Emission. , 2021, ACS applied materials & interfaces.

[4]  David R. Needell,et al.  Outdoor performance of a tandem InGaP/Si photovoltaic luminescent solar concentrator , 2021 .

[5]  N. Davis,et al.  Reducing reabsorption in luminescent solar concentrators with a self-assembling polymer matrix , 2021 .

[6]  David R. Needell,et al.  Photonic Crystal Waveguides for >90% Light Trapping Efficiency in Luminescent Solar Concentrators , 2020, ACS Photonics.

[7]  S. Denbaars,et al.  Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces , 2020, Nature Photonics.

[8]  X. W. Sun,et al.  Low reabsorption and stability enhanced luminescent solar concentrators based on silica encapsulated quantum rods , 2020 .

[9]  Junyu Wang,et al.  Three-dimensional macroporous photonic crystal enhanced photon collection for quantum dot-based luminescent solar concentrator , 2020 .

[10]  S. McCormack,et al.  An overview of various configurations of Luminescent Solar Concentrators for photovoltaic applications , 2019, Optical Materials.

[11]  Alberto Salleo,et al.  Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield , 2019, Science.

[12]  Emily C. Warmann,et al.  The Polyhedral Specular Reflector: A Spectrum-Splitting Multijunction Design to Achieve Ultrahigh ( >50%) Solar Module Efficiencies , 2019, IEEE Journal of Photovoltaics.

[13]  Kelsey A. W. Horowitz,et al.  A Techno-Economic Analysis and Cost Reduction Roadmap for III-V Solar Cells , 2018 .

[14]  Z. Du,et al.  Enhanced light out-coupling efficiency of quantum dot light emitting diodes by nanoimprint lithography. , 2018, Nanoscale.

[15]  Kaitlyn P. Becker,et al.  All-Polymer Integrated Optical Resonators by Roll-to-Roll Nanoimprint Lithography , 2018 .

[16]  Michael G. Debije,et al.  Multistate Luminescent Solar Concentrator “Smart” Windows , 2018 .

[17]  Kaifeng Wu,et al.  Tandem luminescent solar concentrators based on engineered quantum dots , 2018 .

[18]  Vivian E. Ferry,et al.  Designing spectrally-selective mirrors for use in luminescent solar concentrators , 2018 .

[19]  Emily C. Warmann,et al.  Design of photovoltaics for modules with 50% efficiency , 2017 .

[20]  A. Alivisatos,et al.  Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals , 2017, Proceedings of the National Academy of Sciences.

[21]  Liwei Lin,et al.  Characterizing Photon Reabsorption in Quantum Dot-Polymer Composites for Use as Displacement Sensors. , 2017, ACS nano.

[22]  Zhengshan Yu,et al.  Selecting tandem partners for silicon solar cells , 2016, Nature Energy.

[23]  V. Ferry,et al.  Integrating Photonics with Luminescent Solar Concentrators: Optical Transport in the Presence of Photonic Mirrors , 2016 .

[24]  Christophe Ballif,et al.  Realization of GaInP/Si Dual-Junction Solar Cells With 29.8% 1-Sun Efficiency , 2016, IEEE Journal of Photovoltaics.

[25]  Noah D Bronstein,et al.  Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration , 2015 .

[26]  J. Yu,et al.  Tunable distributed Bragg reflectors with wide-angle and broadband high-reflectivity using nanoporous/dense titanium dioxide film stacks for visible wavelength applications. , 2014, Optics express.

[27]  J. Rogers,et al.  Nonimaging Optical Gain in Luminescent Concentration through Photonic Control of Emission Etendue , 2014 .

[28]  Sebastian Mackowski,et al.  Radiation channels close to a plasmonic nanowire visualized by back focal plane imaging. , 2013, ACS nano.

[29]  Cees W. M. Bastiaansen,et al.  Dual waveguide patterned luminescent solar concentrators , 2013 .

[30]  Paul P. C. Verbunt,et al.  Anisotropic light emissions in luminescent solar concentrators-isotropic systems. , 2013, Optics express.

[31]  Richard R. Lunt,et al.  Transparent Luminescent Solar Concentrators for Large‐Area Solar Windows Enabled by Massive Stokes‐Shift Nanocluster Phosphors , 2013 .

[32]  Paul P. C. Verbunt,et al.  Increased efficiency of luminescent solar concentrators after application of organic wavelength selective mirrors. , 2012, Optics express.

[33]  H. Zappe,et al.  Electromagnetic simulations of a photonic luminescent solar concentrator. , 2012, Optics express.

[34]  H. Atwater,et al.  Photonic design principles for ultrahigh-efficiency photovoltaics. , 2012, Nature materials.

[35]  Paul P. C. Verbunt,et al.  Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment , 2012 .

[36]  D. C. Law,et al.  Solar cell generations over 40% efficiency , 2011 .

[37]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[38]  M. Peters,et al.  Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristic of the incorporated luminescent material: the 'Nano-Fluko' concept , 2010, Photonics Europe.

[39]  C. Rotschild,et al.  Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling. , 2010, Optics express.

[40]  Paul P. C. Verbunt,et al.  Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors. , 2010, Applied optics.

[41]  Jingang Liu,et al.  High refractive index polymers: fundamental research and practical applications , 2009 .

[42]  Benedikt Bläsi,et al.  The effect of photonic structures on the light guiding efficiency of fluorescent concentrators , 2009 .

[43]  A. Meyer,et al.  Luminescent Solar Concentrators--a review of recent results. , 2008, Optics express.

[44]  Ewan D. Dunlop,et al.  A luminescent solar concentrator with 7.1% power conversion efficiency , 2008 .

[45]  Stéphane Larouche,et al.  OpenFilters: open-source software for the design, optimization, and synthesis of optical filters. , 2008, Applied optics.

[46]  Eric Baer,et al.  Polymeric One‐Dimensional Photonic Crystals by Continuous Coextrusion , 2007 .

[47]  Eli,et al.  Thermodynamics of the fluorescent planar concentrator , 2005 .

[48]  David R. Mills,et al.  Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review , 2004 .

[49]  Lukas Novotny,et al.  Single-molecule orientations determined by direct emission pattern imaging , 2004 .

[50]  宮森 悠 ライブラリー Annual Energy Outlook 2000 , 2000 .

[51]  Mikael Kubista,et al.  Experimental correction for the inner-filter effect in fluorescence spectra , 1994 .

[52]  Roland Winston,et al.  The thermodynamic limits of light concentrators , 1990 .

[53]  M. Fayer,et al.  Luminescent solar concentrators and the reabsorption problem. , 1981, Applied optics.

[54]  J. S. Batchelder,et al.  Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation. , 1979, Applied optics.

[55]  A. Goetzberger Fluorescent solar energy collectors: Operating conditions with diffuse light , 1978 .

[56]  W. Lukosz,et al.  Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power , 1977 .