VLSI Process modeling—SUPREM III

Over the past several years, the process-simulation tool SUPREM II has proven useful in the design and optimization of both bipolar and MOS technologies. This paper describes a new and significantly more capable version of the program--SUPREM III--which incorporates process models suitable for VLSI device design. This new version of the program is now generally available and should provide a powerful new tool in VLSI design. For the first time, the program models multilayer structures (up to five material layers). It also incorporates substantially upgraded diffusion, oxidation, ion implantation, and other process models. These models incorporate, where possible, recent thinking about underlying physical mechanisms. The program remains a one-dimensional simulator; extensions to two dimensions are discussed. This paper concentrates on the process models and their underlying physics; implementation issues are addressed elsewhere.

[1]  R. Dutton,et al.  Models for computer simulation of complete IC fabrication process , 1979 .

[2]  James F. Gibbons,et al.  An application of the Boltzmann transport equation to ion range and damage distributions in multilayered targets , 1980 .

[3]  J. Seto The electrical properties of polycrystalline silicon films , 1975 .

[4]  D. W. Hess,et al.  Kinetics of the Thermal Oxidation of Silicon in O 2 / HCl Mixtures , 1977 .

[5]  Richard B. Fair,et al.  Boron Diffusion in Silicon‐Concentration and Orientation Dependence, Background Effects, and Profile Estimation , 1975 .

[6]  K. Saraswat,et al.  A model for conduction in polycrystalline silicon—Part II: Comparison of theory and experiment , 1981, IEEE Transactions on Electron Devices.

[7]  James D. Plummer,et al.  Si / SiO2 Interface Oxidation Kinetics: A Physical Model for the Influence of High Substrate Doping Levels II . Comparison with Experiment and Discussion , 1979 .

[8]  W. Oldham,et al.  Channeling effect of low energy boron implant in , 1983, IEEE Electron Device Letters.

[9]  Richard B. Fair,et al.  Effect of complex formation on diffusion of arsenic in silicon , 1973 .

[10]  Y. C. Cheng,et al.  The Effect of HCl and Cl2 on the Thermal Oxidation of Silicon , 1972 .

[11]  R. Dutton,et al.  A process simulation model for multilayer structures involving polycrystalline silicon , 1982, IEEE Transactions on Electron Devices.

[12]  C. K. Osburn,et al.  Dielectric Breakdown Properties of SiO2 Films Grown in Halogen and Hydrogen‐Containing Environments , 1974 .

[13]  S. P. Murarka,et al.  Erratum: Role of point defects in the growth of the oxidation-induced stacking faults in silicon , 1977 .

[14]  Richard B. Fair,et al.  Oxidation, Impurity Diffusion, and Defect Growth in Silicon—An Overview , 1981 .

[15]  Krishna C. Saraswat,et al.  A Model for Dopant Incorporation into Growing Silicon Epitaxial Films I . Theory , 1979 .

[16]  Krishna C. Saraswat,et al.  Transient and Steady‐State Response of the Dopant System of a Silicon Epitaxial Reactor: Transfer‐Function Approach , 1978 .

[17]  R. Anderson,et al.  Microstructural Analysis of Evaporated and Pyrolytic Silicon Thin Films , 1973 .

[18]  Robert W. Dutton,et al.  Computer Aided Design of Integrated Circuit Fabrication Processes for VLSI Devices , 1981 .

[19]  Y. J. V. D. Meulen,et al.  Kinetics of Thermal Growth of Ultra‐Thin Layers of SiO2 on Silicon Part II . Theory , 1972 .

[20]  Thomas A. DeMassa,et al.  Hyperabrupt epitaxial tuning diodes , 1977 .

[21]  Kenji Taniguchi,et al.  Oxidation Enhanced Diffusion of Boron and Phosphorus in (100) Silicon , 1980 .

[22]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[23]  J. Lindhard,et al.  RANGE CONCEPTS AND HEAVY ION RANGES (NOTES ON ATOMIC COLLISIONS, II) , 1963 .

[24]  Bruce E. Deal,et al.  Kinetics of High Pressure Oxidation of Silicon in Pyrogenic Steam , 1981 .

[25]  Joseph Blanc,et al.  A revised model for the oxidation of Si by oxygen , 1978 .

[26]  K. Haberger,et al.  Simulation of doping processes , 1980 .

[27]  P. Dobson,et al.  The effect of oxidation on anomalous diffusion in silicon , 1971 .

[28]  Robert W. Dutton,et al.  Nonplanar VLSI device analysis using the solution of Poisson's equation , 1980 .

[29]  Giorgio Baccarani,et al.  Transport properties of polycrystalline silicon films , 1978 .

[30]  Richard B. Fair,et al.  A Quantitative Model for the Diffusion of Phosphorus in Silicon and the Emitter Dip Effect , 1977 .

[31]  Robert W. Dutton,et al.  Computer Simulation in Silicon Epitaxy , 1981 .

[32]  D. Nobili,et al.  Precipitation as the phenomenon responsible for the electrically inactive phosphorus in silicon , 1982 .

[33]  R.W. Dutton,et al.  Process modeling of integrated circuit device technology , 1981, Proceedings of the IEEE.

[34]  S. M. Hu,et al.  Formation of stacking faults and enhanced diffusion in the oxidation of silicon , 1974 .

[35]  F. P. Heiman,et al.  Use of HCl Gettering in Silicon Device Processing , 1971 .

[36]  A. Wilson,et al.  Recovery and recrystallization of metals edited by L. Himmel , 1964 .

[37]  C. R. Helms,et al.  Studies of Phosphorus Pile‐Up at the Si ‐ SiO2 Interface Using Auger Sputter Profiling , 1981 .

[38]  William A. Tiller,et al.  On the Kinetics of the Thermal Oxidation of Silicon I . A Theoretical Perspective , 1980 .

[39]  R. Reif Phosphorus Incorporation during Silicon Epitaxial Growth in a CVD Reactor , 1982 .

[40]  Y. J. von der Meulen,et al.  Kinetics of Thermal Growth of Ultra‐Thin Layers of SiO2 on Silicon I . Experiment , 1972 .

[41]  Yasuo Wada,et al.  Grain Growth Mechanism of Heavily Phosphorus‐Implanted Polycrystalline Silicon , 1978 .

[42]  Robert W. Dutton,et al.  The Growth of Oxidation Stacking Faults and the Point Defect Generation at Si ‐ SiO Interface during Thermal Oxidation of Silicon , 1981 .

[43]  Bruce E. Deal,et al.  High Pressure Oxidation of Silicon in Dry Oxygen , 1982 .

[44]  James D. Plummer,et al.  Si / SiO2 Interface Oxidation Kinetics: A Physical Model for the Influence of High Substrate Doping Levels I . Theory , 1979 .

[45]  W. Shockley,et al.  Solubility of Flaws in Heavily-Doped Semiconductors , 1960 .

[46]  Krishna C. Saraswat,et al.  A Model for Dopant Incorporation into Growing Silicon Epitaxial Films II . Comparison of Theory and Experiment , 1979 .