On the Analytical Approach to Present Engineering Problems:Photovoltaic Systems Behavior, Wind Speed Sensors Performance, and High-Speed Train Pressure Wave Effects inTunnels

At present, engineering problems required quite a sophisticated calculation means. However, analytical models still can prove to be a useful tool for engineers and scientists when dealing with complex physical phenomena. The mathematical models developed to analyze three different engineering problems: photovoltaic devices analysis; cup anemometer performance; and high-speed train pressure wave effects in tunnels are described. In all cases, the results are quite accurate when compared to testing measurements.

[1]  Yu Zhang,et al.  Development of a new compound method to extract the five parameters of PV modules , 2014 .

[2]  José Meseguer Ruiz Stability of slender, axisymmetric liquid bridges between unequal disks , 1984 .

[3]  Santiago Pindado,et al.  Anomaly detection on cup anemometers , 2014 .

[4]  Lele Peng,et al.  A new method for determining the characteristics of solar cells , 2013 .

[5]  Michael S. Howe,et al.  The compression wave produced by a high-speed train entering a tunnel , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  Shu-xian Lun,et al.  A new six-parameter model for solar cell parameters based on padé approximants , 2014, Proceedings of 2014 IEEE International Conference on Service Operations and Logistics, and Informatics.

[7]  Prudence W. H. Wong,et al.  Parameter Estimation of Photovoltaic Models via Cuckoo Search , 2013, J. Appl. Math..

[8]  Javier Cubas,et al.  New Method for Analytical Photovoltaic Parameters Identification: Meeting Manufacturer’s Datasheet for Different Ambient Conditions , 2014 .

[9]  Jiann-Fuh Chen,et al.  Novel maximum-power-point-tracking controller for photovoltaic energy conversion system , 2001, IEEE Trans. Ind. Electron..

[10]  Mame William-Louis,et al.  A wave signature based method for the prediction of pressure transients in railway tunnels , 2005 .

[11]  Giuseppina Ciulla,et al.  An improved five-parameter model for photovoltaic modules , 2010 .

[12]  Angel Sanz-Andrés,et al.  Train-induced pressure on pedestrians , 2002 .

[13]  A. Das Analytical expression of the physical parameters of an illuminated solar cell using explicit J–V model , 2013 .

[14]  Javier Cubas,et al.  New method for analytical photovoltaic parameter extraction , 2013, 2013 International Conference on Renewable Energy Research and Applications (ICRERA).

[15]  Antonino Laudani,et al.  High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I–V curves by using reduced forms , 2014 .

[16]  Huang Wei,et al.  Extracting solar cell model parameters based on chaos particle swarm algorithm , 2011, 2011 International Conference on Electric Information and Control Engineering.

[17]  Mohammad Reza Azizian,et al.  On the Parameter Extraction of a Five-Parameter Double-Diode Model of Photovoltaic Cells and Modules , 2014, IEEE Journal of Photovoltaics.

[18]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[19]  A. E. Vardy,et al.  Estimation of train resistance coefficients in tunnels from measurements during routine operation , 1999 .

[20]  Javier Cubas,et al.  The Cup Anemometer, a Fundamental Meteorological Instrument for the Wind Energy Industry , 2014, ECSA 2014.

[21]  Navid Fatemi,et al.  Qualification and production of Emcore ZTJ solar panels for space missions , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[22]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[23]  D. Aiken,et al.  The development of >28% efficient triple-junction space solar cells at Emcore Photovoltaics , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[24]  José Meseguer,et al.  Stability of Liquid Bridges Between Coaxial Equidimensional Disks to Axisymmetric Finite Perturbations: A Review , 2012 .

[25]  H. Zogg,et al.  CdTe/CdS SOLAR CELL PERFORMANCE UNDER LOW IRRADIANCE , 2001 .

[26]  M. F. AlHajri,et al.  A new estimation approach for determining the I–V characteristics of solar cells , 2011 .

[27]  Christopher Baker,et al.  Vehicle-induced force on pedestrians , 2004 .

[28]  J. Meseguer,et al.  Numerical and experimental study of the dynamics of axisymmetric slender liquid bridges , 1985 .

[29]  Santiago Pindado,et al.  Deviation of Cup and Propeller Anemometer Calibration Results with Air Density , 2012 .

[30]  Santiago Pindado,et al.  Cup Anemometers’ Loss of Performance Due to Ageing Processes, and Its Effect on Annual Energy Production (AEP) Estimates , 2012 .

[31]  Emilio Álvarez Pereira,et al.  A regular perturbation approach to surface tension driven flows , 1982 .

[32]  Ding Kun,et al.  A simplified model for photovoltaic modules based on improved translation equations , 2014 .

[33]  Yuqing He,et al.  Parameter extraction of solar cell models using mutative-scale parallel chaos optimization algorithm , 2014 .

[34]  M. Wolf,et al.  SERIES RESISTANCE EFFECTS ON SOLAR CELL MEASUREMENTS , 1963 .

[35]  A. Jayakumar,et al.  Exact analytical solution for current flow through diode with series resistance , 2000 .

[36]  Fred C. Lee,et al.  Modeling and analysis of spacecraft power systems , 1988 .

[37]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[38]  Prudence W. H. Wong,et al.  Approximate Single-Diode Photovoltaic Model for Efficient I-V Characteristics Estimation , 2013, TheScientificWorldJournal.

[39]  Angel Pedro Sanz Andres,et al.  Aerodynamic Analysis of Cup Anemometers Performance:The Stationary Harmonic Response , 2013 .

[40]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[41]  Masanobu Iida,et al.  Analysis and Experiment of Compression Wave Generated by Train Entering Tunnel Entrance Hood , 2006 .

[42]  J. Meseguer,et al.  Liquid bridge breakages aboard spacelab-d1 , 1986 .

[43]  K. L. Kennerud Analysis of Performance Degradation in CdS Solar Cells , 1969, IEEE Transactions on Aerospace and Electronic Systems.

[44]  Santiago Pindado,et al.  Mathematical Analysis of the Effect of Rotor Geometry on Cup Anemometer Response , 2014, TheScientificWorldJournal.

[45]  Paul Sharps,et al.  Solar array trades between very high-efficiency multi-junction and Si space solar cells , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[46]  Javier Bajo,et al.  On Cup Anemometer Rotor Aerodynamics , 2012, Sensors.

[47]  Andreas Bauer,et al.  An Effective Single Solar Cell Equivalent Circuit Model for Two or More Solar Cells Connected in Series , 2014, IEEE Journal of Photovoltaics.

[48]  Santiago Pindado,et al.  Analysis of calibration results from cup and propeller anemometers. Influence on wind turbine Annual Energy Production (AEP) calculations , 2011 .

[49]  A. Hirschberg,et al.  An introduction to acoustics , 1992 .

[50]  Javier Cubas,et al.  On the analytical approach for modeling photovoltaic systems behavior , 2014 .

[51]  Javier Cubas,et al.  Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function , 2014 .

[52]  M. Chegaar,et al.  Solar cells parameters evaluation considering the series and shunt resistance , 2007 .

[53]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[54]  Santiago Pindado Carrion,et al.  Fourier analysis of the aerodynamic behavior of cup anemometers , 2013 .

[55]  Flavius-Maxim Petcut,et al.  Solar Cell Parameter Identification Using Genetic Algorithms , 2010 .

[56]  J. Meseguer,et al.  The breaking of axisymmetric slender liquid bridges , 1983 .

[57]  J. A. Gow,et al.  Development of a photovoltaic array model for use in power-electronics simulation studies , 1999 .

[58]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[59]  Santiago Pindado Carrion,et al.  The Cup Anemometer, a Fundamental Meteorological Instrument for the Wind Energy Industry. Research at the IDR/UPM Institute , 2014 .

[60]  U. Grasselli,et al.  Satellite power system simulation , 1997 .

[61]  Javier Cubas,et al.  ON THE SIMULATION OF THE UPMSAT-2 MICROSATELLITE POWER , 2014 .

[62]  Mike Duke,et al.  The numerical calculation of single-diode solar-cell modelling parameters , 2014 .

[63]  Christopher Baker,et al.  VEHICLE-INDUCED LOADS ON TRAFFIC SIGN PANELS , 2003 .

[64]  J. Phillips,et al.  Accurate analytical method for the extraction of solar cell model parameters , 1984 .

[65]  Ignacio Da Riva de la Cavada,et al.  Fluid-physics-module experiments , 1976 .

[66]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[67]  I. Da-Riva STABILITY OF LIQUID BRIDGES , 1981 .

[68]  Diego Torres-Lobera,et al.  Inclusive dynamic thermal and electric simulation model of solar PV systems under varying atmospheric conditions , 2014 .

[70]  Avinashi Kapoor,et al.  An Exact Analytical Method for Calculating the Parameters of a Real Solar Cell Using Special Trans Function Theory (STFT) , 2013 .

[71]  J. M. Blanes,et al.  Geometric properties of the single-diode photovoltaic model and a new very simple method for parameters extraction , 2014 .

[72]  D. Chan,et al.  Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics , 1987, IEEE Transactions on Electron Devices.