Particle swarm optimization assisted multiuser detector for M-QAM DS/CDMA systems

This paper analyzes the particle swarm optimization multiuser detector (PSO-MUD) under high-order modulation schemes, (particularly for M-QAM), in DS/CDMA systems single-input-single-output (SISO) multipath channels. In order to avoid the computation of complex-valued variables in high-order squared modulation, the optimization problem is reformulated as a real-valued problem. Considering previous results on literature for low-order modulation formats (usually binary/quadrature phase shift keying - BPSK/QPSK), a performancetimescomplexity trade-off comparison is carried out between PSO-MUD and local search multiuser detector (LS-MUD). Performance is evaluated by the symbol error rate (SER), and complexity by necessary number of cost function calculations for convergence. If the background for BPSK heuristic multiuser detection (HEURMUD) problem indicates that the 1-opt local search method is enough to achieve excellent performancetimescomplexity trade-offs, our Monte-Carlo simulation results and analysis show herein indicate the LS-MUD presents a lack of search diversity under high-order modulation formats, while the PSO-MUD is efficient to solve the MUD problem for high-order modulation schemes.

[1]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[2]  Taufik Abrão,et al.  DS/CDMA Multiuser Detection with Evolutionary Algorithms , 2006, J. Univers. Comput. Sci..

[3]  Heng Siong Lim,et al.  An efficient local search heuristics for asynchronous multiuser detection , 2003, IEEE Communications Letters.

[4]  Hang Long,et al.  WLC06-6: PSO Selection of Surviving Nodes in QRM Detection for MIMO Systems , 2006, IEEE Globecom 2006.

[5]  Sergio Verdu,et al.  Multiuser Detection , 1998 .

[6]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[7]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[8]  Peng Zhou,et al.  MIMO Detection of 16-QAM Signaling Based on Semidefinite Relaxation , 2007, IEEE Signal Processing Letters.

[9]  Xiaofeng Wang,et al.  Semidefinite programming relaxation approach for multiuser detection of QAM signals , 2007, IEEE Transactions on Wireless Communications.

[10]  Nikos D. Sidiropoulos,et al.  A Semidefinite Relaxation Approach to MIMO Detection for High-Order QAM Constellations , 2006, IEEE Signal Processing Letters.

[11]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[12]  Kadri Hacioglu,et al.  Multiuser detection using a genetic algorithm in CDMA communications systems , 2000, IEEE Trans. Commun..

[13]  Zhiwei Mao,et al.  Multiuser detection for MC-CDMA system with M-QAM using semidefinite programming relaxation , 2005, PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005..

[14]  S.I. Shah,et al.  Heuristics Assisted Detection in High Speed Wireless Communication Systems , 2006, 2006 IEEE International Multitopic Conference.

[15]  P.J.E. Jeszensky,et al.  Evolutionary programming with cloning and adaptive cost function applied to multi-user DS-CDMA systems , 2004, Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications - Programme and Book of Abstracts (IEEE Cat. No.04TH8738).

[16]  Ami Wiesel,et al.  Semidefinite relaxation for detection of 16-QAM signaling in MIMO channels , 2005, IEEE Signal Processing Letters.

[17]  Zhi-Quan Luo,et al.  Quasi-maximum-likelihood multiuser detection using semi-definite relaxation with application to synchronous CDMA , 2002, IEEE Trans. Signal Process..

[18]  Andreas Antoniou,et al.  A near-optimal multiuser detector for DS-CDMA systems using semidefinite programming relaxation , 2003, IEEE Trans. Signal Process..

[19]  S. Moshavi,et al.  Multi-user detection for DS-CDMA communications , 1996, IEEE Commun. Mag..

[20]  Pak-Chung Ching,et al.  Semidefinite relaxation based multiuser detection for M-ary PSK multiuser systems , 2004, IEEE Trans. Signal Process..

[21]  F. Ciriaco,et al.  Particle Swarm and Quantum Particle Swarm Optimization Applied to DS/CDMA Multiuser Detection in Flat Rayleigh Channels , 2006, 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications.

[22]  Youyun Xu,et al.  A Novel Quadratic Programming Model for Soft-Input Soft-Output MIMO Detection , 2007, IEEE Signal Processing Letters.

[23]  W.H. Tranter,et al.  Simulation of communication systems , 1994, IEEE Communications Magazine.

[24]  Yves Crama,et al.  Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.

[25]  P.J.E. Jeszensky,et al.  Simplified Local Search Algorithm for Multiuser Detection in Multipath Rayleigh Channels , 2007, 2007 16th IST Mobile and Wireless Communications Summit.

[26]  Taufik Abrão,et al.  Local search multiuser detection , 2009 .