Particles Interacting with a Vibrating Medium: Existence of Solutions and Convergence to the Vlasov-Poisson System

We are interested in a kinetic equation intended to describe the interaction of particles with their environment. The environment is modeled by a collection of local vibrational degrees of freedom. We establish the existence of weak solutions for a wide class of initial data and external forces. We also identify a relevant regime which allows us to derive, quite surprisingly, the attractive Vlasov--Poisson system from the coupled Vlasov wave equations.

[1]  Franck Boyer,et al.  Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models , 2012 .

[2]  François Golse,et al.  The mean-field limit for the dynamics of large particle systems , 2003 .

[3]  F. Bouchut,et al.  Introduction to the Mathematical Theory of Kinetic Equations , 1998 .

[4]  Emanuele Caglioti,et al.  On the Boltzmann-Grad Limit for the Two Dimensional Periodic Lorentz Gas , 2010 .

[5]  T. Goudon,et al.  Damping of particles interacting with a vibrating medium , 2017 .

[6]  Thierry Goudon Intégration : Intégrale de Lebesgue et introduction à l'analyse fonctionnelle , 2011 .

[7]  L. Bruneau,et al.  A Hamiltonian Model for Linear Friction in a Homogeneous Medium , 2002 .

[8]  Equilibration, Generalized Equipartition, and Diffusion in Dynamical Lorentz Gases , 2010, 1009.3706.

[9]  On the Periodic Lorentz Gas and the Lorentz Kinetic Equation ( , 2007, math/0703812.

[10]  S. Bievre,et al.  Stochastic acceleration in a random time-dependent potential , 2014, 1409.2098.

[11]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[12]  Astronomy,et al.  Chaotic dynamics of a free particle interacting linearly with a harmonic oscillator , 2005, nlin/0507043.

[13]  Jens Marklof,et al.  The Boltzmann-Grad limit of the periodic Lorentz gas , 2008 .

[14]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[15]  Homogenisation of transport kinetic equations with oscillating potentials , 1996 .

[16]  Alexis Vasseur,et al.  Classical and quantum transport in random media , 2003 .

[17]  S. Bievre,et al.  Normal Transport Properties in a Metastable Stationary State for a Classical Particle Coupled to a Non-Ohmic Bath , 2008, 0802.0592.

[18]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[19]  G. Papanicolaou,et al.  A limit theorem for stochastic acceleration , 1980 .

[20]  S. Bievre,et al.  Classical Motion in Force Fields with Short Range Correlations , 2009, 0906.4676.

[21]  T. Tao,et al.  Endpoint Strichartz estimates , 1998 .

[22]  T. Goudon,et al.  Stochastic Acceleration in an Inhomogeneous Time Random Force Field , 2009 .

[23]  C. Mouhot,et al.  Empirical Measures and Vlasov Hierarchies , 2013, 1309.0222.

[24]  Pierre-Louis Lions,et al.  Lp regularity of velocity averages , 1991 .

[25]  Christopher D. Sogge,et al.  Lectures on Nonlinear Wave Equations , 2005 .

[26]  L. Bunimovich,et al.  On the Boltzmann equation for the Lorentz gas , 1983 .

[27]  C. Chou The Vlasov equations , 1965 .

[28]  F. Golse,et al.  Nonresonant smoothing for coupled wave+ transport equations and the Vlasov-Maxwell system , 2004 .

[29]  Giovanni Gallavotti,et al.  Rigorous Theory Of The Boltzmann Equation In The Lorentz Gas , 1972 .