A mosaic tetracycline resistance gene tet(S/M) detected in an MDR pneumococcal CC230 lineage that underwent capsular switching in South Africa
暂无分享,去创建一个
Andries J. van Tonder | S. Madhi | S. Sekaran | M. Hasanuzzaman | S. Bentley | D. Aanensen | D. Lehmann | N. Croucher | B. Sigaúque | A. Kiran | S. Clarke | A. Pollard | R. Breiman | A. Corso | R. Dagan | M. Antonio | T. Ochoa | E. Sadowy | J. Keenan | P. Turner | A. von Gottberg | J. Verani | P. Ho | L. McGee | W. Hryniewicz | K. Klugman | D. Everett | R. Mostowy | S. Shakoor | S. Obaro | N. Givon-Lavi | B. Beall | P. Carter | M. Ip | R. Gladstone | S. Lo | M. du Plessis | S. Nzenze | B. Kwambana-Adams | B. Metcalf | S. Saha | V. Balaji | Mushal Ali | M. Alaerts | J. Cornick | E. Sampane-Donkor | S. Doiphode | L. De Gouveia | J. Moïsi | N. Wolter | G. Bigogo | A. Skoczyńska | M. Paragi | L. Titov | Ebenezer Foster-Nyarko | D. Faccone | P. Gagetti | P. Law | P. Akpaka | K. Zerouali | A. Davydov | S. Srifuengfung | Peggy-Estelle Tientcheu | P. Hawkins | Yuan Li | K. Ndlangisa | E. Bojang | N. Elmdaghri | I. Diawara | H. Belabbes | S. C. Almeida | M. C. de Cunto Brandileone | R. Kandasamy | Benild Moiane | Hélio Mucavele | R. Ford | A. V. van Tonder | R. Malaker | Ö. Eser | K. Ravikumar | E. Egorova | A. Brooks | A. Maguire | E. Voropaeva | G. Nagaraj | Jyothish N Nair Thulasee Bhai | Rachel Benisty | R. Henderson | T. Kastrin | Y. Urban | N. Givon‐Lavi | Abdullah W Alejandra Alexander Alison Andrew J Anmol Anna B Brooks Corso Davydov Maguire Pollard Kir
[1] Andries J. van Tonder,et al. Pneumococcal lineages associated with serotype replacement and antibiotic resistance in childhood invasive pneumococcal disease in the post-PCV13 era: an international whole-genome sequencing study , 2019, The Lancet. Infectious diseases.
[2] Jukka Corander,et al. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact , 2019, EBioMedicine.
[3] Andries J. van Tonder,et al. Effect of Vaccination on Pneumococci Isolated from the Nasopharynx of Healthy Children and the Middle Ear of Children with Otitis Media in Iceland , 2018, Journal of Clinical Microbiology.
[4] S. Kaplan,et al. Invasive Serotype 35B Pneumococci Including an Expanding Serotype Switch Lineage , 2018, Emerging infectious diseases.
[5] T. Stadler,et al. Tuberculosis outbreak investigation using phylodynamic analysis , 2017, bioRxiv.
[6] Cheryl P. Andam,et al. Population genetic structure, antibiotic resistance, capsule switching and evolution of invasive pneumococci before conjugate vaccination in Malawi , 2017, Vaccine.
[7] L. McGee,et al. Validation of β-lactam minimum inhibitory concentration predictions for pneumococcal isolates with newly encountered penicillin binding protein (PBP) sequences , 2017, BMC Genomics.
[8] S. Bentley,et al. Pre-vaccine serotype composition within a lineage signposts its serotype replacement – a carriage study over 7 years following pneumococcal conjugate vaccine use in the UK , 2017, Microbial genomics.
[9] L. McGee,et al. Invasive Serotype 35B Pneumococci Including an Expanding Serotype Switch Lineage, United States, 2015–2016 , 2017, Emerging infectious diseases.
[10] Julian Parkhill,et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads , 2017, bioRxiv.
[11] F. Granados-Chinchilla,et al. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications , 2017, Journal of analytical methods in chemistry.
[12] S. Kaplan,et al. Emergence of Multidrug-Resistant Pneumococcal Serotype 35B among Children in the United States , 2016, Journal of Clinical Microbiology.
[13] Lei Dai,et al. Evolution and Diversity of the Antimicrobial Resistance Associated Mobilome in Streptococcus suis: A Probable Mobile Genetic Elements Reservoir for Other Streptococci , 2016, Front. Cell. Infect. Microbiol..
[14] C. Whitney,et al. Penicillin-Binding Protein Transpeptidase Signatures for Tracking and Predicting β-Lactam Resistance Levels in Streptococcus pneumoniae , 2016, mBio.
[15] A. Lindstrand,et al. Effects of PCV7 and PCV13 on invasive pneumococcal disease and carriage in Stockholm, Sweden , 2016, European Respiratory Journal.
[16] C. Whitney,et al. Strain features and distributions in pneumococci from children with invasive disease before and after 13-valent conjugate vaccine implementation in the USA , 2016, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.
[17] Andrew Rambaut,et al. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen) , 2016, Virus evolution.
[18] C. Chiu,et al. Evolving pneumococcal serotypes and sequence types in relation to high antibiotic stress and conditional pneumococcal immunization , 2015, Scientific Reports.
[19] Aldert L. Zomer,et al. The post-vaccine microevolution of invasive Streptococcus pneumoniae , 2015, Scientific Reports.
[20] S. Madhi,et al. Effects of vaccination on invasive pneumococcal disease in South Africa. , 2014, The New England journal of medicine.
[21] A. Walker,et al. Reduction of invasive pneumococcal disease 3 years after the introduction of the 13-valent conjugate vaccine in the Oxfordshire region of England. , 2014, The Journal of infectious diseases.
[22] A. von Gottberg,et al. Population Snapshot of Streptococcus pneumoniae Causing Invasive Disease in South Africa Prior to Introduction of Pneumococcal Conjugate Vaccines , 2014, PloS one.
[23] David R. Riley,et al. Parallel Evolution of Streptococcus pneumoniae and Streptococcus mitis to Pathogenic and Mutualistic Lifestyles , 2014, mBio.
[24] Dong Xie,et al. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..
[25] Jukka Corander,et al. Dense genomic sampling identifies highways of pneumococcal recombination , 2014, Nature Genetics.
[26] S. Gualberto,et al. Daily ingestion of tetracycline residue present in pasteurized milk: a public health problem , 2014, Environmental Science and Pollution Research.
[27] Andries J. van Tonder,et al. Evidence of antimicrobial resistance-conferring genetic elements among pneumococci isolated prior to 1974 , 2013, BMC Genomics.
[28] J. Parkhill,et al. Pneumococcal Capsular Switching: A Historical Perspective , 2012, The Journal of infectious diseases.
[29] S. Bonhoeffer,et al. Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV) , 2012, Proceedings of the National Academy of Sciences.
[30] G. Perozzi,et al. Molecular characterization of a novel mosaic tet(S/M) gene encoding tetracycline resistance in foodborne strains of Streptococcus bovis , 2012, Microbiology.
[31] Cheryl Cohen,et al. The impact of antiretroviral treatment on the burden of invasive pneumococcal disease in South African children: a time series analysis , 2011, AIDS.
[32] M. Gottschalk,et al. Spread of Streptococcus suis Sequence Type 7, China , 2008, Emerging infectious diseases.
[33] P. Hsueh,et al. Identification of tet(S) gene area in tetracycline-resistant Streptococcus dysgalactiae subsp. equisimilis clinical isolates. , 2007, The Journal of antimicrobial chemotherapy.
[34] R. Bedi,et al. Characterization of Tn916S, a Tn916-Like Element Containing the Tetracycline Resistance Determinant tet(S) , 2004, Journal of bacteriology.
[35] Marilyn Roberts,et al. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance , 2001, Microbiology and Molecular Biology Reviews.
[36] M. Ferraro. Performance standards for antimicrobial susceptibility testing , 2001 .
[37] K. Klugman,et al. Identification of the tetracycline resistance gene, tet(O), in Streptococcus pneumoniae , 1996, Antimicrobial agents and chemotherapy.
[38] J. M. Smith,et al. The tetracycline resistance gene tet(M) exhibits mosaic structure. , 1996, Plasmid.
[39] E. Charpentier,et al. Characterization of a new class of tetracycline-resistance gene tet(S) in Listeria monocytogenes BM4210. , 1993, Gene.