Intermediate-temperature nickel–yttria stabilized zirconia supported tubular solid oxide fuel cells using gadolinia-doped ceria electrolyte

[1]  Toshio Suzuki,et al.  One-step sintering process of gadolinia-doped ceria interlayer―scandia-stabilized zirconia electrolyte for anode supported microtubular solid oxide fuel cells , 2012 .

[2]  A. Youzbashi,et al.  Synthesis of nanosized gadolinium doped ceria solid solution by high energy ball milling , 2011 .

[3]  Toshio Suzuki,et al.  Low temperature processed composite cathodes for Solid-oxide fuel Cells , 2011 .

[4]  Meilin Liu,et al.  Anode-supported micro-tubular SOFCs fabricated by a phase-inversion and dip-coating process , 2011 .

[5]  N. Sammes,et al.  Electrochemical characterizations of microtubular solid oxide fuel cells under a long-term testing a , 2011 .

[6]  J. Gurauskis,et al.  Anode-supported microtubular cells fabricated with gadolinia-doped ceria nanopowders , 2011 .

[7]  Bei-bei Liu,et al.  Micro-tubular solid oxide fuel cells with graded anodes fabricated with a phase inversion method , 2011 .

[8]  Siwei Wang,et al.  Fabrication and characterization of anode-supported micro-tubular solid oxide fuel cell based on BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolyte , 2011 .

[9]  Toshiaki Yamaguchi,et al.  Fabrication of micro-tubular solid oxide fuel cells with a single-grain-thick yttria stabilized zirconia electrolyte , 2010 .

[10]  D. Dong,et al.  Comparative study on the performance of tubular and button cells with YSZ membrane fabricated by a refined particle suspension coating technique , 2010 .

[11]  Bin Lin,et al.  An anode-supported micro-tubular solid oxide fuel cell with redox stable composite cathode , 2010 .

[12]  G. Meng,et al.  An anode-supported hollow fiber solid oxide fuel cell with (Pr0.5Nd0.5)0.7Sr0.3MnO3−δ–YSZ composite cathode , 2010 .

[13]  N. Sammes,et al.  Experimental analysis of micro-tubular solid oxide fuel cell fed by hydrogen , 2010 .

[14]  Z. Wen,et al.  Testing of a cathode fabricated by painting with a brush pen for anode-supported tubular solid oxide fuel cells , 2010 .

[15]  Youkun Tao,et al.  Morphology control of Ce0.9Gd0.1O1.95 nanopowder synthesized by sol–gel method using PVP as a surfactant , 2009 .

[16]  N. Shikazono,et al.  Microstructure and polarization characteristics of anode supported tubular solid oxide fuel cell with co-precipitated and mechanically mixed Ni-YSZ anodes , 2009 .

[17]  C. Xia,et al.  Effect of impregnation of Sm-doped CeO2 in NiO/YSZ anode substrate prepared by gelcasting for tubular solid oxide fuel cell , 2009 .

[18]  Toshiaki Yamaguchi,et al.  Effect of anode microstructure on the performance of micro tubular SOFCs , 2009 .

[19]  Toshio Suzuki,et al.  Wet Atomisation of Gd‐doped CeO2 Electrolyte Slurries for Intermediate Temperatures' Microtubular SOFC Applications , 2009 .

[20]  A. K. Tyagi,et al.  Synthesis of nanocrystalline Gd doped ceria by combustion technique , 2009 .

[21]  Chusheng Chen,et al.  Fabrication and characterization of an anode-supported hollow fiber SOFC , 2009 .

[22]  Ji-won Son,et al.  Synthesis of nano-crystalline Ce0.9Gd0.1O1.95 electrolyte by novel sol–gel thermolysis process for IT-SOFCs , 2008 .

[23]  Jiang Liu,et al.  Slip casting combined with colloidal spray coating in fabrication of tubular anode-supported solid oxide fuel cells , 2008 .

[24]  S. Mello-Castanho,et al.  Nickel-Zirconia cermet processing by mechanical alloying for solid oxide fuel cell anodes , 2008 .

[25]  Rak-Hyun Song,et al.  Development of a 700 W anode-supported micro-tubular SOFC stack for APU applications , 2008 .

[26]  Dimos Poulikakos,et al.  A micro-solid oxide fuel cell system as battery replacement , 2008 .

[27]  Toshio Suzuki,et al.  Examination of wet coating and co-sintering technologies for micro-SOFCS fabrication , 2007 .

[28]  Toshiaki Yamaguchi,et al.  Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature , 2006 .

[29]  Z. Lü,et al.  Effects of pre-calcined YSZ powders at different temperatures on Ni–YSZ anodes for SOFC , 2006 .

[30]  G. Corbel,et al.  Physicochemical compatibility of CGO fluorite, LSM and LSCF perovskite electrode materials with La2Mo2O9 fast oxide-ion conductor , 2005 .

[31]  N. Sammes,et al.  Design and fabrication of a 100 W anode supported micro-tubular SOFC stack , 2005 .

[32]  T. Mahata,et al.  Combustion synthesis of gadolinia doped ceria powder , 2005 .

[33]  J. Goodenough,et al.  Synthesis and Electrical Properties of Dense Ce0.9Gd0.1O1.95 Ceramics , 2005 .

[34]  L. Luo,et al.  Carbonate Co-precipitation of Gd2O3-doped CeO2 solid solution nano-particles , 2004 .

[35]  R. Basu,et al.  Preparation of nickel coated YSZ powder for application as an anode for solid oxide fuel cells , 2004 .

[36]  M. Mori,et al.  Low-temperature Sinterable Ce 0.9 Gd 0.l O 1.95 Powder Synthesized through Newly-devised Heat-treatment in the Coprecipitation Process , 2003 .

[37]  Yarong Wang,et al.  10-mol%-Gd2O3-Doped CeO2 Solid Solutions via Carbonate Coprecipitation: A Comparative Study , 2003 .

[38]  Yarong Wang,et al.  Reactive Ceria Nanopowders via Carbonate Precipitation , 2002 .

[39]  M. Greenblatt,et al.  Hydrothermal synthesis and properties of Ce1−xGdxO2−δ solid solutions , 2002 .

[40]  T. Mori,et al.  Reactive Ce0.8RE0.2O1.9 (RE = La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) Powders via Carbonate Coprecipitation. 2. Sintering , 2001 .

[41]  T. Mori,et al.  Reactive Ce0.8RE0.2O1.9 (RE = La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) Powders via Carbonate Coprecipitation. 1. Synthesis and Characterization , 2001 .

[42]  K. Koumoto,et al.  Effects of Particle Size on Sintering and Electrical Characteristics of Ni Powder for Internal Electrode of MLC , 2001 .

[43]  B. Steele,et al.  Material science and engineering: The enabling technology for the commercialisation of fuel cell systems , 2001 .

[44]  S. Singhal Advances in solid oxide fuel cell technology , 2000 .

[45]  D. Stöver,et al.  Total electrical conductivity and defect structure of ZrO2–CeO2–Y2O3–Gd2O3 solid solutions , 2000 .

[46]  H. Inaba,et al.  Thermal expansion of Gd-doped ceria and reduced ceria , 2000 .

[47]  Brian C. H. Steele,et al.  Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C , 2000 .

[48]  Brian C. H. Steele,et al.  Operation of solid oxide fuel cells at reduced temperatures , 1999 .

[49]  A. Gupta,et al.  Performance of a double-layer CGO/YSZ electrolyte for solid oxide fuel cells , 1998 .

[50]  Brian C. H. Steele,et al.  Development of solid oxide fuel cells based on a Ce(Gd)O2−x electrolyte film for intermediate temperature operation , 1997 .

[51]  Mogens Bjerg Mogensen,et al.  Oxidation of hydrogen on Ni/yttria-stabilized zirconia cermet anodes , 1997 .

[52]  Takanori Inoue,et al.  Electrical properties of ceria-based oxides and their application to solid oxide fuel cells , 1992 .

[53]  E. Roncari,et al.  Influence of pore formers on slurry composition and microstructure of tape cast supporting anodes for SOFCs , 2008 .