Gaussian Spectral Rules for the Three-Point Second Differences: I. A Two-Point Positive Definite Problem in a Semi-Infinite Domain

We suggest an approach to grid optimization for a second order finite-difference scheme for elliptic equations. A model problem corresponding to the three-point finite-difference semidiscretization of the Laplace equation on a semi-infinite strip is considered. We relate the approximate boundary Neumann-to-Dirichlet map to a rational function and calculate steps of our finite-difference grid using the Pade--Chebyshev approximation of the inverse square root. It increases the convergence order of the Neumann-to-Dirichlet map from second to exponential without increasing the stencil of the finite-difference scheme and losing stability.

[1]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..

[2]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[3]  John A. Mackenzie The Efficient Generation of Simple Two-Dimensional Adaptive Grids , 1998, SIAM J. Sci. Comput..

[4]  David V. Ingerman,et al.  Discrete and Continuous Dirichlet-to-Neumann Maps in the Layered Case , 2000, SIAM J. Math. Anal..

[5]  O. Nevanlinna Convergence of Iterations for Linear Equations , 1993 .

[6]  Sergey Pavlovich Suetin,et al.  On the Rate of Convergence of Padé Approximants of Orthogonal Expansions , 1992 .

[7]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[8]  R. Varga Functional Analysis and Approximation Theory in Numerical Analysis , 1987 .

[9]  V. N. Sorokin,et al.  Rational Approximations and Orthogonality , 1991 .

[10]  F. R. Gantmakher The Theory of Matrices , 1984 .

[11]  L. Trefethen,et al.  Well-Posedness of one-way wave equations and absorbing boundary conditions , 1986 .

[13]  P. Petrushev,et al.  Rational Approximation of Real Functions , 1988 .

[14]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[15]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[16]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[17]  G. A. Baker,et al.  Padé Approximants Second Edition: Extensions of Padé approximants , 1996 .

[18]  Y. Lu A Padé Approximation Method for Square Roots of Symmetric Positive Definite Matrices , 1998 .

[19]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[20]  G. Strang,et al.  THE OPTIMAL ACCURACY OF DIFFERENCE SCHEMES , 1983 .

[21]  J. Bérenger Perfectly matched layer for the FDTD solution of wave-structure interaction problems , 1996 .

[22]  Andrew B. White,et al.  Supra-convergent schemes on irregular grids , 1986 .

[23]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[24]  Lloyd N. Trefethen,et al.  Pade´, stable Pade´, and Chebyshev-Pade´ approximation , 1987 .