An observer looks at the cell temperature in automotive battery packs

Abstract The internal temperature of Li-ion batteries for electric or hybrid vehicles is an important factor influencing their ageing. Generally not measured, it can be reconstructed from an external measurement and a model. This paper presents the simplified modelling of heat transfers in a battery module, leading to a Linear Parameter-Varying (LPV) model. Then, a polytopic observer is proposed to estimate the cell temperature and internal resistance, ensuring a tradeoff between the convergence speed and the noise of the estimated states. Experimental results show the good quality of the estimation and the diagnosis potential offered by internal resistance reconstruction.

[1]  Gérard Bloch,et al.  Considering the attractor structure of chaotic maps for observer-based synchronization problems , 2005, Math. Comput. Simul..

[2]  Stephen Yurkovich,et al.  Battery cell state-of-charge estimation using linear parameter varying system techniques , 2012 .

[3]  Giorgio Rizzoni,et al.  A Reduced-Order Model for the Thermal Dynamics of Li-Ion Battery Cells , 2010 .

[4]  Alice Schoen,et al.  Resistance Growth in Lithium Ion Satellite Cells. I. Non Destructive Data Analyses , 2006 .

[5]  Ji‐Guang Zhang,et al.  Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries , 2009 .

[6]  Gérard Bloch,et al.  Bounded state reconstruction error for LPV systems with estimated parameters , 2004 .

[7]  Jamal Daafouz,et al.  Polytopic Observers for LPV Discrete-Time Systems , 2013 .

[8]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1. Background , 2004 .

[9]  Péter Gáspár,et al.  Robust Control and Linear Parameter Varying approaches: Application to Vehicle Dynamics , 2013 .

[10]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation , 2004 .

[11]  Ahmad Pesaran,et al.  Battery thermal models for hybrid vehicle simulations , 2002 .

[12]  M. Broussely,et al.  Main aging mechanisms in Li ion batteries , 2005 .

[13]  Yi Ding,et al.  Online Parameterization of Lumped Thermal Dynamics in Cylindrical Lithium Ion Batteries for Core Temperature Estimation and Health Monitoring , 2013, IEEE Transactions on Control Systems Technology.

[14]  M. Smart,et al.  Storage Characteristics of Lithium-Ion Cells , 2010 .

[15]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[16]  Yonghua Li,et al.  Quadruple adaptive observer of the core temperature in cylindrical Li-ion batteries and their health monitoring , 2012, 2012 American Control Conference (ACC).

[17]  Jamal Daafouz,et al.  Performances of Unknown Input Observers for Chaotic LPV Maps in a Stochastic Context , 2006 .

[18]  Dinh Vinh Do,et al.  Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery , 2010 .

[19]  Andreas Jossen,et al.  Fundamentals of battery dynamics , 2006 .

[20]  Stephen Yurkovich,et al.  A technique for dynamic battery model identification in automotive applications using linear parameter varying structures , 2009 .

[21]  Lino Guzzella,et al.  Vehicle Propulsion Systems: Introduction to Modeling and Optimization , 2005 .