Photo and copper dual catalysis for allene syntheses from propargylic derivatives via one-electron process

[1]  Jin‐Heng Li,et al.  Dual Photoredox/Nickel-Catalyzed 1,4-Sulfonylarylation of 1,3-Enynes with Sulfinate Salts and Aryl Halides: Entry into Tetrasubstituted Allenes. , 2021, Organic letters.

[2]  Yong‐Min Liang,et al.  Photoredox/nickel dual-catalyzed regioselective alkylation of propargylic carbonates for trisubstituted allenes. , 2021, Chemical communications.

[3]  Zhenyang Lin,et al.  Enantioselective Copper-Catalyzed Radical Cyanation of Propargylic C-H Bonds: Easy Access to Chiral Allenyl Nitriles. , 2021, Journal of the American Chemical Society.

[4]  Binh Khanh Mai,et al.  Generation of Axially Chiral Fluoroallenes through a Copper-Catalyzed Enantioselective β-Fluoride Elimination. , 2021, Journal of the American Chemical Society.

[5]  Jiacheng Zhang,et al.  Enantio- and Diastereodivergent Construction of 1,3-Nonadjacent Stereocenters Bearing Axial and Central Chirality through Synergistic Pd/Cu Catalysis. , 2021, Journal of the American Chemical Society.

[6]  Tamio Hayashi,et al.  Asymmetric Synthesis of Fluorinated Allenes by Rhodium-Catalyzed Enantioselective Alkylation/Defluorination of Propargyl Difluorides with Alkylzincs. , 2021, Angewandte Chemie.

[7]  Yixin Lu,et al.  Decarboxylative 1,4-carbocyanation of 1,3-enynes to access tetra-substituted allenes via copper/photoredox dual catalysis , 2021, Chemical science.

[8]  P. Chandra,et al.  Copper Mediated Chemo‐ and Stereoselective Cyanation Reactions , 2021, Asian Journal of Organic Chemistry.

[9]  Xin‐Yuan Liu,et al.  Copper-Catalyzed Asymmetric Coupling of Allenyl Radicals with Terminal Alkynes to Access Tetrasubstituted Allenes. , 2020, Angewandte Chemie.

[10]  H. Tsuji,et al.  Transition‐Metal‐Catalyzed Propargylic Substitution of Propargylic Alcohol Derivatives Bearing an Internal Alkyne Group , 2020 .

[11]  Yong‐Min Liang,et al.  Photoredox/palladium co-catalyzed propargylic benzylation with internal propargylic carbonates. , 2020, Chemical communications.

[12]  P. Guiry,et al.  Advances in Decarboxylative Palladium-Catalyzed Reactions of Propargyl Electrophiles. , 2020, The Journal of organic chemistry.

[13]  Junliang Zhang,et al.  Pd-Catalyzed Enantioselective Syntheses of Trisubstituted Allenes via Coupling of Propargylic Benzoates with Organoboronic Acids. , 2020, Journal of the American Chemical Society.

[14]  V. Leso,et al.  Iridium , 2020, Definitions.

[15]  Y. Chi,et al.  Asymmetric Wacker-Type oxyallenylation and Azaallenylation of Cyclic Alkenes. , 2019, Angewandte Chemie.

[16]  Chaofan Huang,et al.  Tetrasubstituted allenes via the palladium-catalysed kinetic resolution of propargylic alcohols using a supporting ligand , 2019, Nature Catalysis.

[17]  S. Buchwald,et al.  Copper Hydride Catalyzed Enantioselective Synthesis of Axially Chiral 1,3-Disubstituted Allenes , 2019, Journal of the American Chemical Society.

[18]  A. Studer,et al.  Deoxygenative Borylation of Secondary and Tertiary Alcohols , 2019, Angewandte Chemie.

[19]  A. Studer,et al.  Palladium-Catalyzed Decarboxylative γ-Arylation for the Synthesis of Tetrasubstituted Chiral Allenes. , 2019, Angewandte Chemie.

[20]  Steven J. Malcolmson,et al.  Preparation of Chiral Allenes through Pd-Catalyzed Intermolecular Hydroamination of Conjugated Enynes: Enantioselective Synthesis Enabled by Catalyst Design. , 2019, Journal of the American Chemical Society.

[21]  S. Ma,et al.  Allenation of Terminal Alkynes with Aldehydes and Ketones. , 2019, Accounts of chemical research.

[22]  Lei Zhu,et al.  Asymmetric Propargylic Radical Cyanation Enabled by Dual Organophotoredox and Copper Catalysis. , 2019, Journal of the American Chemical Society.

[23]  Kang‐Jie Bian,et al.  Nickel-Catalyzed Carbofluoroalkylation of 1,3-Enynes to Access Structurally Diverse Fluoroalkylated Allenes. , 2019, Angewandte Chemie.

[24]  M. Kanai,et al.  Catalytic Regio- and Enantioselective Proton Migration from Skipped Enynes to Allenes , 2019, Chem.

[25]  C. Fu,et al.  Catalytic enantioselective construction of axial chirality in 1,3-disubstituted allenes , 2019, Nature Communications.

[26]  W. Xiao,et al.  Visible-Light-Induced Organic Photochemical Reactions through Energy-Transfer Pathways. , 2018, Angewandte Chemie.

[27]  Xiaotao Zhu,et al.  Copper-Catalyzed Radical 1,4-Difunctionalization of 1,3-Enynes with Alkyl Diacyl Peroxides and N-Fluorobenzenesulfonimide. , 2018, Journal of the American Chemical Society.

[28]  Shuo-qing Zhang,et al.  Catalytic asymmetric synthesis of chiral trisubstituted heteroaromatic allenes from 1,3-enynes , 2018, Communications Chemistry.

[29]  F. Glorius,et al.  Energy transfer catalysis mediated by visible light: principles, applications, directions. , 2018, Chemical Society reviews.

[30]  Fei Wang,et al.  Divergent Synthesis of CF3 -Substituted Allenyl Nitriles by Ligand-Controlled Radical 1,2- and 1,4-Addition to 1,3-Enynes. , 2018, Angewandte Chemie.

[31]  E. Carreira,et al.  Allenylic Carbonates in Enantioselective Iridium-Catalyzed Alkylations. , 2018, Journal of the American Chemical Society.

[32]  J. del Pozo,et al.  Enantioselective Synthesis of Trisubstituted Allenyl-B(pin) Compounds by Phosphine-Cu-Catalyzed 1,3-Enyne Hydroboration. Insights Regarding Stereochemical Integrity of Cu-Allenyl Intermediates. , 2018, Journal of the American Chemical Society.

[33]  G. Bertrand,et al.  Crystalline Monomeric Allenyl/Propargyl Radical. , 2017, Journal of the American Chemical Society.

[34]  Y. Funahashi,et al.  Catalytic Enantioselective Reaction of Allenylnitriles with Imines Using Chiral Bis(imidazoline)s Palladium(II) Pincer Complexes. , 2017, Angewandte Chemie.

[35]  Sarah V. Hainsworth,et al.  Critical assessment: forensic metallurgy – the difficulties , 2017 .

[36]  Felix J R Klauck,et al.  Manganese(I)-Catalyzed Regioselective C-H Allenylation: Direct Access to 2-Allenylindoles. , 2017, Angewandte Chemie.

[37]  G. Molander,et al.  Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis , 2017, Nature Protocols.

[38]  E. Carreira,et al.  Rh-Catalyzed Stereospecific Synthesis of Allenes from Propargylic Benzoates and Arylboronic Acids. , 2016, Organic letters.

[39]  J. Bäckvall,et al.  Iron‐catalyzed Cross‐Coupling of Propargyl Carboxylates and Grignard Reagents: Synthesis of Substituted Allenes , 2016, Angewandte Chemie.

[40]  Wangteng Wu,et al.  A C–H bond activation-based catalytic approach to tetrasubstituted chiral allenes , 2015, Nature Communications.

[41]  Liang Zhao,et al.  Biotransformations of racemic 2,3-allenenitriles in biphasic systems: synthesis and transformations of enantioenriched axially chiral 2,3-allenoic acids and their derivatives. , 2014, The Journal of organic chemistry.

[42]  D. Frantz,et al.  Recent Advances in the Catalytic Syntheses of Allenes: A Critical Assessment , 2014 .

[43]  Wanli Zhang,et al.  A room-temperature catalytic asymmetric synthesis of allenes with ECNU-Phos. , 2013, Journal of the American Chemical Society.

[44]  D. Frantz,et al.  Pd-catalyzed asymmetric β-hydride elimination en route to chiral allenes. , 2013, Journal of the American Chemical Society.

[45]  A. Alexakis,et al.  Copper-catalyzed enantioselective synthesis of axially chiral allenes. , 2012, Organic letters.

[46]  F. Diederich,et al.  Allenes in molecular materials. , 2012, Angewandte Chemie.

[47]  Shichao Yu,et al.  How Easy Are the Syntheses of Allenes , 2011 .

[48]  J. Wang,et al.  Coupling of N-tosylhydrazones with terminal alkynes catalyzed by copper(I): synthesis of trisubstituted allenes. , 2010, Angewandte Chemie.

[49]  Y. Sasaki,et al.  Copper(I)-catalyzed substitution of propargylic carbonates with diboron: selective synthesis of multisubstituted allenylboronates. , 2008, Journal of the American Chemical Society.

[50]  J. Cossy,et al.  Copper-catalyzed Diels-Alder reactions. , 2008, Chemical reviews.

[51]  K. Brummond,et al.  Synthesizing Allenes Today (1982—2006) , 2007 .

[52]  B. Trost,et al.  Dynamic kinetic asymmetric allylic alkylations of allenes. , 2005, Journal of the American Chemical Society.

[53]  S. Ma,et al.  Pd‐Catalyzed Coupling Reactions Involving Propargylic/Allenylic Species , 2004 .

[54]  N. Krause,et al.  Synthesis and properties of allenic natural products and pharmaceuticals. , 2004, Angewandte Chemie.

[55]  H. Sundén,et al.  Palladium pincer complex-catalyzed trimethyltin substitution of functionalized propargylic substrates. An efficient route to propargyl- and allenyl-stannanes. , 2004, Journal of the American Chemical Society.

[56]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[57]  K. Ueno,et al.  Palladium-Catalyzed Asymmetric Alkylation of 2,3-Alkadienyl Phosphates. Synthesis of Optically Active 2-(2,3-Alkadienyl)malonates , 2002 .

[58]  M. Ogasawara,et al.  Palladium-catalyzed asymmetric synthesis of axially chiral allenes: a synergistic effect of dibenzalacetone on high enantioselectivity. , 2001, Journal of the American Chemical Society.

[59]  Kawamura,et al.  Palladium-catalyzed cyanation of propargylic carbonates with trimethylsilyl cyanide , 2000, Organic letters.

[60]  M. Ogasawara,et al.  π-Allylpalladium-Mediated Catalytic Synthesis of Functionalized Allenes , 2000 .

[61]  M. Wolf,et al.  Amination, Aminocarbonylation, and Alkoxycarbonylation of Allenic/ Propargylic Pd Intermediates Derived from Nonracemic Propargylic Mesylates: Synthesis of Nonracemic Propargyl Amines, Allenic Amides, and Butenolides. , 1996 .

[62]  J. Tsuji,et al.  Palladium‐Catalyzed Reactions of Propargylic Compounds in Organic Synthesis , 1996 .

[63]  S. Weinreb,et al.  Novel Intramolecular Ene Reactions of Allenyl silanes , 1995 .

[64]  M. Eida,et al.  Regioselectivity of addition of thiols and amines to conjugated allenic ketones and esters , 1987 .

[65]  P. Brownbridge Silyl Enol Ethers in Synthesis - Part II , 1983 .

[66]  K. Ruitenberg,et al.  PALLADIUM(0)-PROMOTED SYNTHESIS OF FUNCTIONALLY SUBSTITUTED ALLENES BY MEANS OF ORGANOZINC COMPOUNDS , 1981 .

[67]  D. Carini,et al.  (Trimethylsilyl)allenes as propargylic anion equivalents: synthesis of homopropargylic alcohols and ethers , 1980 .

[68]  J. Luche,et al.  Efficient homologation of acetylenes to allenes , 1980 .

[69]  M. Poutsma,et al.  Radical Addition of tert-Butyl Hypochlorite to Conjugated Enynes , 1970 .

[70]  P. Crabbé,et al.  A novel allene synthesis , 1968 .

[71]  Shivani Sharma,et al.  Cyanation: a photochemical approach and applications in organic synthesis , 2021 .

[72]  Pinhong Chen,et al.  Recent Advances and Perspectives in Transition Metal‐Catalyzed 1,4‐Functionalizations of Unactivated 1,3‐Enynes for the Synthesis of Allenes , 2019 .

[73]  A. Barbieri,et al.  Photochemistry and Photophysics of Coordination Compounds: Iridium , 2007 .

[74]  Y. Uozumi,et al.  Axially chiral allenylboranes: catalytic asymmetric synthesis by palladium-catalysed hydroboration of but-1-en-3-ynes and their reaction with an aldehyde , 1993 .

[75]  Z. Fomum,et al.  Novel synthesis of imidazolines and imidazoles by Michael addition to allenic or acetylenic nitriles , 1974 .

[76]  O. Odyek,et al.  Synthesis and reactions of allenic amides , 1974 .

[77]  D. Laws,et al.  The preparation of 1-cyanoallenes , 1965 .

[78]  M. Sibi,et al.  Propargyl Radicals in Organic Synthesis , 2021, European Journal of Organic Chemistry.