SAT Modulo the Theory of Linear Arithmetic: Exact, Inexact and Commercial Solvers
暂无分享,去创建一个
Albert Oliveras | Enric Rodríguez-Carbonell | Robert Nieuwenhuis | Germain Faure | R. Nieuwenhuis | Albert Oliveras | Enric Rodríguez-carbonell | G. Faure
[1] J. Meigs,et al. WHO Technical Report , 1954, The Yale Journal of Biology and Medicine.
[2] Marco Bozzano,et al. The MathSAT 3 System , 2005, CADE.
[3] Armin Biere,et al. Theory and Applications of Satisfiability Testing - SAT 2006, 9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings , 2006, SAT.
[4] Frank Wolter,et al. Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.
[5] Cesare Tinelli,et al. Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) , 2006, JACM.
[6] István Maros. A general Phase-I method in linear programming☆ , 1983 .
[7] Sharad Malik,et al. Lemma Learning in SMT on Linear Constraints , 2006, SAT.
[8] Graham Steel,et al. Deduction with XOR Constraints in Security API Modelling , 2005, CADE.
[10] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[11] Bruno Dutertre,et al. A Fast Linear-Arithmetic Solver for DPLL(T) , 2006, CAV.
[12] Nikolaj Bjørner,et al. Z3: An Efficient SMT Solver , 2008, TACAS.
[13] L. D. Moura,et al. The YICES SMT Solver , 2006 .
[14] Albert Oliveras,et al. Decision Procedures for SAT, SAT Modulo Theories and Beyond. The BarcelogicTools , 2005, LPAR.
[15] Albert Oliveras,et al. DPLL(T) with Exhaustive Theory Propagation and Its Application to Difference Logic , 2005, CAV.