Two-phase mixture modeling of natural convection of nanofluids with temperature-dependent properties

Abstract A two-phase mixture model is used to study natural convection in side-heated square enclosures filled with alumina–water nanofluids having temperature-dependent properties, in the hypothesis that Brownian diffusion and thermophoresis are the primary slip mechanisms between solid and liquid phases. A computational code based on the SIMPLE-C algorithm is used to solve the system of the mass, momentum and energy transfer governing equations. Simulations are performed using the diameter of the suspended nanoparticles and their average concentration, as well as the size of the cavity and the temperatures of its sidewalls, as independent variables. It is found that the heat transfer performance has a peak at an optimal particle loading which increases as all the mentioned controlling parameters are magnified. On the basis of the results obtained, a set of correlations is developed.

[1]  K. Hwang,et al.  Particle concentration and tube size dependence of viscosities of Al2O3-water nanofluids flowing through micro- and minitubes , 2007 .

[2]  H. Sajjadi,et al.  Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid , 2011 .

[3]  Cen Ke-fa,et al.  Dependence of Nanofluid Viscosity on Particle Size and pH Value , 2009 .

[4]  Robert B. Kinney,et al.  Time‐dependent natural convection in a square cavity: Application of a new finite volume method , 1990 .

[5]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[6]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[7]  K. Goodson,et al.  Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method , 2008 .

[8]  A. F. Ismail,et al.  CFD studies on natural convection heat transfer of Al2O3-water nanofluids , 2011 .

[9]  Eiyad Abu-Nada,et al.  Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid , 2009 .

[10]  A micro-convection model for thermal conductivity of nanofluids , 2005 .

[11]  D. Misra,et al.  Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture , 2007 .

[12]  Chongyoup Kim,et al.  VISCOSITY AND THERMAL CONDUCTIVITY OF COPPER OXIDE NANOFLUID DISPERSED IN ETHYLENE GLYCOL , 2005 .

[13]  C. Chon,et al.  Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement , 2005 .

[14]  W. Liu,et al.  Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study , 2010 .

[15]  W. Roetzel,et al.  Pool boiling characteristics of nano-fluids , 2003 .

[16]  Angela Violi,et al.  Natural convection heat transfer of nanofluids in a vertical cavity: Effects of non-uniform particle diameter and temperature on thermal conductivity , 2010 .

[17]  Yulong Ding,et al.  Lattice Boltzmann simulation of alumina-water nanofluid in a square cavity , 2011, Nanoscale research letters.

[18]  Kenneth D. Kihm,et al.  Thermal Conductivity Enhancement of Nanofluids by Brownian Motion , 2005 .

[19]  Wenhua Yu,et al.  The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model , 2003 .

[20]  K. Leong,et al.  Investigations of thermal conductivity and viscosity of nanofluids , 2008 .

[21]  A. G. Agwu Nnanna,et al.  Experimental Model of Temperature-Driven Nanofluid , 2007 .

[22]  Kambiz Vafai,et al.  Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media , 1994 .

[23]  Sarit K. Das,et al.  Model for heat conduction in nanofluids. , 2004, Physical review letters.

[24]  Ziyad N. Masoud,et al.  Effect of nanofluid variable properties on natural convection in enclosures , 2010 .

[25]  B. P. Leonard,et al.  A stable and accurate convective modelling procedure based on quadratic upstream interpolation , 1990 .

[26]  Carlos Casanova,et al.  A study on stability and thermophysical properties (density and viscosity) of Al2O3 in water nanofluid , 2009 .

[27]  Ali J. Chamkha,et al.  Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO–EG–Water nanofluid , 2010 .

[28]  Clement Kleinstreuer,et al.  Laminar nanofluid flow in microheat-sinks , 2005 .

[29]  Stephen U. S. Choi,et al.  Effects of Various Parameters on Nanofluid Thermal Conductivity , 2007 .

[30]  R. Bennacer,et al.  Heterogeneous nanofluids: natural convection heat transfer enhancement , 2011, Nanoscale research letters.

[31]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[32]  Seok Pil Jang,et al.  Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles , 2008 .

[33]  Young I Cho,et al.  HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES , 1998 .

[34]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[35]  Somchai Wongwises,et al.  Enhancement of heat transfer using nanofluids—An overview , 2010 .

[36]  G. D. Davis Natural convection of air in a square cavity: A bench mark numerical solution , 1983 .

[37]  H. Brinkman The Viscosity of Concentrated Suspensions and Solutions , 1952 .

[38]  Haisheng Chen,et al.  Rheological behaviour of ethylene glycol based titania nanofluids , 2007 .

[39]  Niladri Chakraborty,et al.  Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid , 2008 .

[40]  P. Charunyakorn,et al.  Forced convection heat transfer in microencapsulated phase change material slurries: flow in circular ducts , 1991 .

[41]  Xianfan Xu,et al.  Thermal Conductivity of Nanoparticle -Fluid Mixture , 1999 .

[42]  Yue-Tzu Yang,et al.  Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure , 2011 .

[43]  Rozaini Roslan,et al.  Natural convection heat transfer in a nanofluid-filled trapezoidal enclosure , 2011 .

[44]  Decheng Wan,et al.  A NEW BENCHMARK QUALITY SOLUTION FOR THE BUOYANCY-DRIVEN CAVITY BY DISCRETE SINGULAR CONVOLUTION , 2001 .

[45]  G. Peterson,et al.  Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) , 2006 .

[46]  Saiied M. Aminossadati,et al.  Natural Convection Heat Transfer in an Inclined Enclosure Filled with a Water-Cuo Nanofluid , 2009 .

[47]  W. Roetzel,et al.  Natural convection of nano-fluids , 2003 .

[48]  J. Buongiorno Convective Transport in Nanofluids , 2006 .

[49]  Jinlin Wang,et al.  Measurements of nanofluid viscosity and its implications for thermal applications , 2006 .

[50]  C. T. Nguyen,et al.  Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties , 2006 .

[51]  G. S. Mcnab,et al.  Thermophoresis in liquids , 1973 .

[52]  Sheng-Chung Tzeng,et al.  Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures , 2006 .

[53]  M. Corcione Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids , 2011 .

[54]  Boming Yu,et al.  A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles , 2006 .

[55]  K. Kahveci Buoyancy Driven Heat Transfer of Nanofluids in a Tilted Enclosure , 2010 .

[56]  C. T. Nguyen,et al.  Heat transfer behaviours of nanofluids in a uniformly heated tube , 2004 .

[57]  Yulong Ding,et al.  Natural Convection of Cu-Gallium Nanofluid in Enclosures , 2011 .

[58]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[59]  K. Cen,et al.  A numerical investigation of transient natural convection heat transfer of aqueous nanofluids in a differentially heated square cavity , 2011 .

[60]  Yang Li,et al.  Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles , 2010 .

[61]  K. Khanafer,et al.  BUOYANCY-DRIVEN HEAT TRANSFER ENHANCEMENT IN A TWO-DIMENSIONAL ENCLOSURE UTILIZING NANOFLUIDS , 2003 .

[62]  J. P. V. Doormaal,et al.  ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS , 1984 .

[63]  Ching-Jenq Ho,et al.  Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity , 2008 .

[64]  W. Roetzel,et al.  TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITY ENHANCEMENT FOR NANOFLUIDS , 2003 .

[65]  M. Corcione Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls , 2010 .

[66]  Gang Chen,et al.  Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid , 2008 .

[67]  O. Tillement,et al.  Rheological properties of nanofluids flowing through microchannels , 2007 .

[68]  Fariborz Haghighat,et al.  Numerical study of double-diffusive natural convection in a square cavity , 1992 .

[69]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[70]  M. Reggio,et al.  Natural convection of nanofluids in a shallow rectangular enclosure heated from the side , 2012 .

[71]  S. Suresh,et al.  Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid , 2010 .

[72]  C. T. Nguyen,et al.  Temperature and particle-size dependent viscosity data for water-based nanofluids : Hysteresis phenomenon , 2007 .

[73]  Mohsen Jahanshahi,et al.  Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2 nanofluid , 2010 .

[74]  Sheng‐Qi Zhou,et al.  Measurement of the specific heat capacity of water-based Al2O3 nanofluid , 2008 .

[75]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[76]  H. Masuda,et al.  ALTERATION OF THERMAL CONDUCTIVITY AND VISCOSITY OF LIQUID BY DISPERSING ULTRA-FINE PARTICLES. DISPERSION OF AL2O3, SIO2 AND TIO2 ULTRA-FINE PARTICLES , 1993 .

[77]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[78]  A. Bejan Convection Heat Transfer , 1984 .

[79]  M. Hortmann,et al.  Finite volume multigrid prediction of laminar natural convection: Bench-mark solutions , 1990 .

[80]  C. T. Nguyen,et al.  New temperature dependent thermal conductivity data for water-based nanofluids , 2009 .

[81]  Vahid Bordbar,et al.  Double Diffusive Natural Convection Heat Transfer Enhancement in a Square Enclosure Using Nanofluids , 2011 .

[82]  Haisheng Chen,et al.  Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe , 2007 .

[83]  J. Koo,et al.  A new thermal conductivity model for nanofluids , 2004 .