Investigation of OSL surface exposure dating to reconstruct post-LIA glacier fluctuations in the French Alps (Mer de Glace, Mont Blanc massif)

[1]  E. Rhodes,et al.  Using thermoluminescence signals from feldspars for low-temperature thermochronology , 2017 .

[2]  T. Herbert,et al.  Late Miocene global cooling and the rise of modern ecosystems , 2016 .

[3]  Philippe Steer,et al.  Exploring IRSL 50 fading variability in bedrock feldspars and implications for OSL thermochronometry , 2016 .

[4]  F. Herman,et al.  Northward migration of the eastern Himalayan syntaxis revealed by OSL thermochronometry , 2016, Science.

[5]  F. Herman,et al.  Multi-OSL-thermochronometry of feldspar , 2016 .

[6]  M. Christl,et al.  A deglaciation model of the Oberhasli, Switzerland , 2016 .

[7]  A. Murray,et al.  Mathematical model quantifies multiple daylight exposure and burial events for rock surfaces using luminescence dating , 2015 .

[8]  N. Porat,et al.  Age of a prehistoric “Rodedian” cult site constrained by sediment and rock surface luminescence dating techniques , 2015 .

[9]  Reuven Chen,et al.  OSL-thermochronometry of feldspar from the KTB borehole, Germany , 2015 .

[10]  S. Ivy‐Ochs Glacier variations in the European Alps at the end of the last glaciation , 2015 .

[11]  Laurent Astrade,et al.  Calendar-dated glacier variations in the western European Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif , 2015 .

[12]  S. Ivy‐Ochs,et al.  Provided for Non-commercial Research and Education Use. Not for Reproduction, Distribution or Commercial Use. Dating Disappearing Ice with Cosmogenic Nuclides , 2022 .

[13]  Antoine Rabatel,et al.  Multitemporal glacier inventory of the French Alps from the late 1960s to the late 2000s , 2014 .

[14]  R. Finkel,et al.  A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, Central Alps, Switzerland, based on high-sensitivity beryllium-10 moraine dating , 2014 .

[15]  R. Wieler,et al.  Chronology of Lateglacial ice flow reorganization and deglaciation in the Gotthard Pass area, Central Swiss Alps, based on cosmogenic 10Be and in situ 14C , 2014 .

[16]  F. Herman,et al.  Worldwide acceleration of mountain erosion under a cooling climate , 2013, Nature.

[17]  W. Broecker,et al.  What drives glacial cycles , 2013 .

[18]  Alexander R. Simms,et al.  Relative sea-level history of Marguerite Bay, Antarctic Peninsula derived from optically stimulated luminescence-dated beach cobbles , 2013 .

[19]  Antoine Rabatel,et al.  Changes in glacier equilibrium-line altitude in the western Alps from 1984 to 2010: evaluation by remote sensing and modeling of the morpho-topographic and climate controls , 2013 .

[20]  R. Alley,et al.  Holocene dynamics of the Rhone Glacier, Switzerland, deduced from ice flow models and cosmogenic nuclides , 2012 .

[21]  A. Murray,et al.  Surface exposure dating of non-terrestrial bodies using optically stimulated luminescence: A new method , 2012 .

[22]  A. Murray,et al.  Optically stimulated luminescence (OSL) dating of quartzite cobbles from the Tapada do Montinho archaeological site (east‐central Portugal) , 2012 .

[23]  I. Liritzis,et al.  A new mathematical approximation of sunlight attenuation in rocks for surface luminescence dating , 2011 .

[24]  I. Liritzis Surface dating by luminescence: An overview , 2011 .

[25]  C. Schlüchter,et al.  Quaternary glaciation history of northern Switzerland , 2011 .

[26]  M. Grosjean,et al.  Quantitative inter‐annual and decadal June–July–August temperature variability ca. 570 BC to AD 120 (Iron Age–Roman Period) reconstructed from the varved sediments of Lake Silvaplana, Switzerland , 2011 .

[27]  R. Alley,et al.  The Rhone Glacier was smaller than today for most of the Holocene , 2011 .

[28]  A. Murray,et al.  Investigating the resetting of OSL signals in rock surfaces , 2011 .

[29]  Edward J. Rhodes,et al.  Optically Stimulated Luminescence Dating of Sediments over the Past 200,000 Years , 2011 .

[30]  Alexander R. Simms,et al.  A new approach to reconstructing sea levels in Antarctica using optically stimulated luminescence of cobble surfaces , 2011 .

[31]  K. Thomsen,et al.  Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry , 2010 .

[32]  P. Kubik,et al.  Latest Pleistocene and Holocene glacier variations in the European Alps , 2009 .

[33]  S. B. Nielsen,et al.  Glacial effects limiting mountain height , 2009, Nature.

[34]  L. Owen,et al.  Luminescence dating of glacial and associated sediments: review, recommendations and future directions , 2008 .

[35]  G. Duller Single‐grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating , 2008 .

[36]  I. Hajdas Radiocarbon dating and its applications in Quaternary studies , 2008 .

[37]  A. Murray,et al.  Optically stimulated luminescence (OSL) dating investigations of rock and underlying soil from three case studies , 2007 .

[38]  P. Gibbard,et al.  The extent and chronology of Cenozoic Global Glaciation , 2007 .

[39]  A. Murray,et al.  A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols , 2006 .

[40]  Jean-François Buoncristiani,et al.  Paléogéographie du dernier maximum glaciaire du Pléistocène récent de la région du Massif du Mont Blanc, France , 2006 .

[41]  S. Winkler Lichenometric dating of the ‘Little Ice Age’ maximum in Mt Cook National Park, Southern Alps, New Zealand , 2004 .

[42]  R. Bailey Paper I—simulation of dose absorption in quartz over geological timescales and its implications for the precision and accuracy of optical dating , 2004 .

[43]  Y. Maniatis,et al.  Thermoluminescence characteristics of marble and dating of freshly excavated marble objects , 2003 .

[44]  F. Phillips,et al.  Terrestrial in situ cosmogenic nuclides: theory and application , 2001 .

[45]  Peizhen Zhang,et al.  Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates , 2001, Nature.

[46]  J. Zachos,et al.  Climate Response to Orbital Forcing Across the Oligocene-Miocene Boundary , 2001, Science.

[47]  G. Wagner,et al.  Steps towards surface dating using luminescence , 2000 .

[48]  A. Murray,et al.  Luminescence dating of quartz using an improved single aliquot regenerative-dose protocol , 2000 .

[49]  A. Lang,et al.  Age and source of colluvial sediments at Vaihingen–Enz, Germany , 1999 .

[50]  M. Aitken,et al.  An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence , 1998 .

[51]  C. Dobmeier Variscan P–T deformation paths from the southwestern Aiguilles Rouges massif (External massif, western Alps) and their implication for its tectonic evolution , 1998 .

[52]  Michael Baillie,et al.  A Slice Through Time: Dendrochronology and Precision Dating , 1997 .

[53]  M. Blumthaler,et al.  Increase in solar UV radiation with altitude , 1997 .

[54]  P. Theocaris,et al.  Dating of Two Hellenic Pyramids by a Novel Application of Thermoluminescence , 1997 .

[55]  D. Lal,et al.  Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models , 1991 .

[56]  P. Molnar,et al.  Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? , 1990, Nature.

[57]  Judith L. Lean,et al.  Solar ultraviolet irradiance variations: A review , 1987 .

[58]  A. Penck Glacial Features in the Surface of the Alps , 1905, The Journal of Geology.

[59]  E. Berthier,et al.  Future fluctuations of Mer de Glace, French Alps, assessed using a parameterized model calibrated with past thickness changes , 2014, Annals of Glaciology.

[60]  G. Balco Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010 , 2011 .

[61]  D. Steiner,et al.  Fluctuations of the Mer de Glace (Mont Blanc area, France) AD 1500-2050. An interdisciplinary approach using new historical data and neural network simulations , 2007 .

[62]  H. Synal,et al.  The timing of glacier advances in the northern European Alps based on surface exposure dating with cosmogenic 10Be, 26Al, 36Cl, and 21Ne , 2006 .

[63]  I. Liritzis A new dating method by thermoluminescence of carved megalithic stone building , 1994 .

[64]  M. Richards Luminescence dating of quartzite from the Diring Yuriakh site , 1994 .

[65]  M. L. W. Thewalt,et al.  Optical dating of sediments , 1985, Nature.