Technology Evolution for Silicon Nanoelectronics: Postscaling Technology

Si ultralarge-scale integration (ULSI) circuits have been developed by downscaling device dimensions on the basis of the concept of scaling, following Moore's law. However, continued downscaling in future ULSI devices will become more difficult because of an increase in the number of technological and economic problems. Therefore, it is necessary to establish a new direction of technological development different from that based on downscaling. In this review, a technology that realizes devices with high performance, integration, and functionality independently of downscaling, is referred to as a postscaling technology, and the current status and future perspectives of postscaling technology are briefly summarized and discussed.

[1]  F. Trumbore,et al.  Solid solubilities of impurity elements in germanium and silicon , 1960 .

[2]  Richard A. Soref,et al.  Direct-gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures , 1993 .

[3]  K. Natori Ballistic metal-oxide-semiconductor field effect transistor , 1994 .

[4]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[5]  Friedrich Schäffler,et al.  High-mobility Si and Ge structures , 1997 .

[6]  Mark S. Lundstrom Elementary scattering theory of the Si MOSFET , 1997, IEEE Electron Device Letters.

[7]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[8]  Q. Tong,et al.  Transfer of semiconductor and oxide films by wafer bonding and layer cutting , 2000 .

[9]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.

[10]  S. Sugahara,et al.  A spin metal–oxide–semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain , 2004 .

[11]  Yasuhiko Ishikawa,et al.  Silicidation-induced band gap shrinkage in Ge epitaxial films on Si , 2004 .

[12]  K. Schroeder,et al.  Vacancy-complexes with oversized impurities in Si and Ge , 2005 .

[13]  Stefan Zollner,et al.  Optical critical points of thin-film Ge 1-y Sn y alloys: A comparative Ge 1-y Sn y /Ge 1-x Si x study , 2006 .

[14]  Frederic Allibert,et al.  Germanium-on-insulator (GeOI) substrates—A novel engineered substrate for future high performance devices , 2006 .

[15]  Chih-Wen Liu,et al.  Electron mobility enhancement in strained-germanium n-channel metal-oxide-semiconductor field-effect transistors , 2007 .

[16]  A. Fert,et al.  Tunnel junctions with multiferroic barriers. , 2007, Nature materials.

[17]  A. Chroneos,et al.  Isovalent impurity‐vacancy complexes in germanium , 2007 .

[18]  Akira Sakai,et al.  Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates , 2006 .

[19]  Eugene A. Fitzgerald,et al.  Growth of highly tensile-strained Ge on relaxed InxGa1−xAs by metal-organic chemical vapor deposition , 2008 .

[20]  Manuel Bibes,et al.  Spintronics with multiferroics , 2008 .

[21]  Hyuk-Jae Jang,et al.  Geometric dephasing-limited Hanle effect in long-distance lateral silicon spin transport devices , 2008 .

[22]  Mitsuru Takenaka,et al.  Evidence of low interface trap density in GeO2∕Ge metal-oxide-semiconductor structures fabricated by thermal oxidation , 2008 .

[23]  Tomonori Nishimura,et al.  Ge/GeO2 Interface Control with High-Pressure Oxidation for Improving Electrical Characteristics , 2009 .

[24]  Yoshiaki Nakano,et al.  Thin Body III–V-Semiconductor-on-Insulator Metal–Oxide–Semiconductor Field-Effect Transistors on Si Fabricated Using Direct Wafer Bonding , 2009 .

[25]  Akira Sakai,et al.  Characterization and Analyses of Interface Structures in Directly Bonded Si(011)/Si(001) Substrates , 2009 .

[26]  Akira Sakai,et al.  Mechanical Properties and Chemical Reactions at the Directly Bonded Si–Si Interface , 2009 .

[27]  Akira Sakai,et al.  Mobility Behavior of Ge1-xSnx Layers Grown on Silicon-on-Insulator Substrates , 2010 .

[28]  Roger Loo,et al.  Assessment of Ge1-xSnx Alloys for Strained Ge CMOS Devices , 2010 .

[29]  M Takenaka,et al.  High-Performance $\hbox{GeO}_{2}/\hbox{Ge}$ nMOSFETs With Source/Drain Junctions Formed by Gas-Phase Doping , 2010, IEEE Electron Device Letters.

[30]  Yosuke Shimura,et al.  Control of Strain Relaxation Behavior of Ge1-xSnx Layers for Tensile Strained Ge Layers , 2010 .

[31]  M. Ferhat,et al.  Electronic structure of SnxGe1−x alloys for small Sn compositions: Unusual structural and electronic properties , 2010 .

[32]  Masanobu Miyao,et al.  High-quality epitaxial CoFe/Si(111) heterostructures fabricated by low-temperature molecular beam epitaxy , 2010 .

[33]  Mitsuru Takenaka,et al.  Impact of InGaAs surface nitridation on interface properties of InGaAs metal-oxide-semiconductor capacitors using electron cyclotron resonance plasma sputtering SiO2 , 2010 .

[34]  Nicola A. Spaldin,et al.  Multiferroics: Past, present, and future , 2010 .

[35]  Akira Sakai,et al.  Low temperature growth of Ge1 ― xSnx buffer layers for tensile―strained Ge layers , 2010 .

[36]  M. Miyao,et al.  Epitaxial growth of a full-Heusler alloy Co2FeSi on silicon by low-temperature molecular beam epitaxy , 2009, 0906.2840.

[37]  Akira Sakai,et al.  Control of strain relaxation behavior of Ge1−xSnx buffer layers , 2011 .

[38]  Yosuke Shimura,et al.  Characterization of GeSn materials for future Ge pMOSFETs source/drain stressors , 2011 .

[39]  Y. Maeda,et al.  Bias current dependence of spin accumulation signals in a silicon channel detected by a Schottky tunnel contact , 2011, 1104.2658.

[40]  Mitsuru Takenaka,et al.  Self-Aligned Metal Source/Drain InxGa1-xAs n-Metal?Oxide?Semiconductor Field-Effect Transistors Using Ni?InGaAs Alloy , 2011 .

[41]  Roger Loo,et al.  Ge1−xSnx stressors for strained-Ge CMOS , 2011 .