Stacking of segments and q -enumeration of convex directed polyominoes

Abstract We enumerate parallelogram polyominoes and directed and convex polyominoes by constructing a bijection between parallelogram polyominoes and some heaps of segments. An extension of a Mobius inversion theorem then gives the generating functions.

[1]  Jean-Pierre Nadal,et al.  Exact results for 2D directed animals on a strip of finite width , 1983 .

[2]  D Gouyou-Beauchamps,et al.  Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem , 1988 .

[3]  Dominique Perrin,et al.  Partial Commutations , 1989, ICALP.

[4]  D. Dhar Equivalence of the two-dimensional directed-site animal problem to Baxter's hard-square lattice-gas model , 1982 .

[5]  H. Temperley Combinatorial Problems Suggested by the Statistical Mechanics of Domains and of Rubber-Like Molecules , 1956 .

[6]  Gérard Viennot,et al.  Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..

[7]  Bernard Derrida,et al.  Directed lattice animals in 2 dimensions : numerical and exact results , 1982 .

[8]  K. Lin,et al.  Rigorous results for the number of convex polygons on the square and honeycomb lattices , 1988 .

[9]  G. Viennot Heaps of Pieces, I: Basic Definitions and Combinatorial Lemmas , 1989 .

[10]  Ira M. Gessel,et al.  A noncommutative generalization and $q$-analog of the Lagrange inversion formula , 1980 .

[11]  Mireille Bousquet-Mélou,et al.  Une bijection entre les polyominos convexes dirigés et les mots de Dyck bilatères , 1992, RAIRO Theor. Informatics Appl..

[12]  Privman,et al.  Exact generating function for fully directed compact lattice animals. , 1988, Physical review letters.

[13]  Philippe Flajolet Combinatorial aspects of continued fractions , 1980, Discret. Math..

[14]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[15]  D. Klarner,et al.  A Procedure for Improving the Upper Bound for the Number of n-Ominoes , 1972, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[16]  Edward A. Bender,et al.  Convex n-ominoes , 1974, Discret. Math..

[17]  Ronald L. Rivest,et al.  Asymptotic bounds for the number of convex n-ominoes , 1974, Discret. Math..

[18]  Philippe Flajolet,et al.  On congruences and continued fractions for some classical combinatorial quantities , 1982, Discret. Math..