Stacking of segments and q -enumeration of convex directed polyominoes
暂无分享,去创建一个
[1] Jean-Pierre Nadal,et al. Exact results for 2D directed animals on a strip of finite width , 1983 .
[2] D Gouyou-Beauchamps,et al. Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem , 1988 .
[3] Dominique Perrin,et al. Partial Commutations , 1989, ICALP.
[4] D. Dhar. Equivalence of the two-dimensional directed-site animal problem to Baxter's hard-square lattice-gas model , 1982 .
[5] H. Temperley. Combinatorial Problems Suggested by the Statistical Mechanics of Domains and of Rubber-Like Molecules , 1956 .
[6] Gérard Viennot,et al. Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..
[7] Bernard Derrida,et al. Directed lattice animals in 2 dimensions : numerical and exact results , 1982 .
[8] K. Lin,et al. Rigorous results for the number of convex polygons on the square and honeycomb lattices , 1988 .
[9] G. Viennot. Heaps of Pieces, I: Basic Definitions and Combinatorial Lemmas , 1989 .
[10] Ira M. Gessel,et al. A noncommutative generalization and $q$-analog of the Lagrange inversion formula , 1980 .
[11] Mireille Bousquet-Mélou,et al. Une bijection entre les polyominos convexes dirigés et les mots de Dyck bilatères , 1992, RAIRO Theor. Informatics Appl..
[12] Privman,et al. Exact generating function for fully directed compact lattice animals. , 1988, Physical review letters.
[13] Philippe Flajolet. Combinatorial aspects of continued fractions , 1980, Discret. Math..
[14] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .
[15] D. Klarner,et al. A Procedure for Improving the Upper Bound for the Number of n-Ominoes , 1972, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.
[16] Edward A. Bender,et al. Convex n-ominoes , 1974, Discret. Math..
[17] Ronald L. Rivest,et al. Asymptotic bounds for the number of convex n-ominoes , 1974, Discret. Math..
[18] Philippe Flajolet,et al. On congruences and continued fractions for some classical combinatorial quantities , 1982, Discret. Math..