Transport in Transitory, Three-Dimensional, Liouville Flows

We derive an action-flux formula to compute the volumes of lobes quantifying transport between past- and future-invariant regions of $n$-dimensional, transitory, globally Liouville flows. A transitory system is one that is nonautonomous only on a compact time interval. This method requires relatively little Lagrangian information about the codimension-one surfaces bounding the lobes, relying only on the generalized actions of loops on the lobe boundaries. These are easily computed since the vector fields are autonomous before and after the time-dependent transition. Two examples in three dimensions are studied: a transitory ABC flow and a model of a microdroplet moving through a microfluidic channel mixer. In both cases the action-flux computations of transport are compared to those obtained using Monte Carlo methods.

[1]  Fernando J. Muzzio,et al.  Quantification of mixing in aperiodic chaotic flows , 1994 .

[2]  J. Meiss,et al.  Resonance zones and lobe volumes for exact volume-preserving maps , 2008, 0812.1810.

[3]  James D. Meiss,et al.  Differential dynamical systems , 2007, Mathematical modeling and computation.

[4]  Julio M. Ottino,et al.  Designing Optimal Micromixers , 2004, Science.

[5]  V. Arnold,et al.  Sur la topologie des écoulements stationnaires des fluides parfaits , 1965 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Stephen Wiggins,et al.  Foundations of chaotic mixing , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Patrick Patrick Anderson,et al.  Passive and Active Mixing in Microfluidic Devices , 2009 .

[9]  G. Ma,et al.  Electric field assisted manipulation of microdroplets on a superhydrophobic surface. , 2010, Biomicrofluidics.

[10]  Filip Sadlo,et al.  Visualizing Lagrangian Coherent Structures and Comparison to Vector Field Topology , 2009, Topology-Based Methods in Visualization II.

[11]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[12]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[13]  James D. Meiss,et al.  Transport in Hamiltonian systems , 1984 .

[14]  J. Meiss Symplectic maps , 2008 .

[15]  Uriel Frisch,et al.  A note on the stability of a family of space-periodic Beltrami flows , 1987, Journal of Fluid Mechanics.

[16]  K. Mohseni,et al.  Vortex Shedding over a Two-Dimensional Airfoil: Where the Particles Come From , 2008 .

[17]  Uriel Frisch,et al.  Chaotic streamlines in the ABC flows , 1986, Journal of Fluid Mechanics.

[18]  Igor F. Lyuksyutov,et al.  On-chip manipulation of levitated femtodroplets , 2004 .

[19]  J. Marsden,et al.  Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows , 2005 .

[20]  James D. Meiss,et al.  Transport in Transitory Dynamical Systems , 2010, SIAM J. Appl. Dyn. Syst..

[21]  S. Wiggins,et al.  Transport in two-dimensional maps , 1990 .

[22]  J. Meiss,et al.  Generating forms for exact volume-preserving maps , 2008, 0803.4350.

[23]  G. Froyland,et al.  Almost-invariant sets and invariant manifolds — Connecting probabilistic and geometric descriptions of coherent structures in flows , 2009 .

[24]  Patrick Patrick Anderson,et al.  Chaotic mixing using periodic and aperiodic sequences of mixing protocols in a micromixer , 2008 .

[25]  Z. Stone,et al.  Imaging and quantifying mixing in a model droplet micromixer , 2005 .

[26]  George Haller,et al.  Finite time transport in aperiodic flows , 1998 .

[27]  I. Mezić,et al.  Chaotic Mixer for Microchannels , 2002, Science.

[28]  Robert S. MacKay,et al.  Transport in 3D volume-preserving flows , 1994 .

[29]  D. Beebe,et al.  Physics and applications of microfluidics in biology. , 2002, Annual review of biomedical engineering.

[30]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[31]  M. Rio,et al.  The turnstile mechanism across the Kuroshio current: analysis of dynamics in altimeter velocity fields , 2010, 1003.0377.

[32]  R. Grigoriev,et al.  Mixing properties of steady flow in thermocapillary driven droplets , 2007 .

[33]  Y. K. Cheung,et al.  1 Supplementary Information for : Microfluidics-based diagnostics of infectious diseases in the developing world , 2011 .

[34]  G. Haller,et al.  Lagrangian coherent structures and mixing in two-dimensional turbulence , 2000 .

[35]  G. Haller Distinguished material surfaces and coherent structures in three-dimensional fluid flows , 2001 .

[36]  Jerrold E. Marsden,et al.  Lagrangian coherent structures in n-dimensional systems , 2007 .

[37]  Xiaohua Zhao,et al.  Chaotic and Resonant Streamlines in the ABC Flow , 1993, SIAM J. Appl. Math..

[38]  Stephen Wiggins,et al.  Introduction: mixing in microfluidics , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  G. Froyland,et al.  Transport in time-dependent dynamical systems: finite-time coherent sets. , 2010, Chaos.

[40]  Jerrold E. Marsden,et al.  Transport and stirring induced by vortex formation , 2007, Journal of Fluid Mechanics.

[41]  Stephen Wiggins,et al.  Distinguished hyperbolic trajectories in time-dependent fluid flows: analytical and computational approach for velocity fields defined as data sets , 2002 .

[42]  S. Digumarthy,et al.  Isolation of rare circulating tumour cells in cancer patients by microchip technology , 2007, Nature.

[43]  William H. Press,et al.  Numerical recipes in C , 2002 .

[44]  A M Mancho,et al.  Distinguished trajectories in time dependent vector fields. , 2008, Chaos.

[45]  Karine Loubière,et al.  Experimental and numerical study of droplets hydrodynamics in microchannels , 2006 .

[46]  Debin Huang,et al.  Invariant tori and chaotic streamlines in the ABC flow , 1998 .

[47]  H. Aref Stirring by chaotic advection , 1984, Journal of Fluid Mechanics.

[48]  G. Marmo,et al.  Liouville dynamics and Poisson brackets , 1981 .

[49]  Joshua D. Tice,et al.  Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[50]  George Haller,et al.  The geometry and statistics of mixing in aperiodic flows , 1999 .