Dissolution behavior of silk fibroin in a low concentration CaCl2-methanol solvent: From morphology to nanostructure.

[1]  Wenwen Huang,et al.  Polymorphic regenerated silk fibers assembled through bioinspired spinning , 2017, Nature Communications.

[2]  Xungai Wang,et al.  Interactions between fibroin and sericin proteins from Antheraea pernyi and Bombyx mori silk fibers. , 2016, Journal of colloid and interface science.

[3]  Keita Ito,et al.  Silk fibroin as biomaterial for bone tissue engineering. , 2016, Acta biomaterialia.

[4]  Yuan Cheng,et al.  Structures, mechanical properties and applications of silk fibroin materials , 2015 .

[5]  Sijie Tao,et al.  Differences in regenerated silk fibroin prepared with different solvent systems: From structures to conformational changes , 2015 .

[6]  B. Zuo,et al.  Rapid formation of flexible silk fibroin gel‐like films , 2015 .

[7]  Feng Zhang,et al.  Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution. , 2015, ACS applied materials & interfaces.

[8]  Baoqi Zuo,et al.  Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2-formic acid solvent. , 2015, Acta biomaterialia.

[9]  C. Cao,et al.  Regenerated silk fibroin films with controllable nanostructure size and secondary structure for drug delivery. , 2014, ACS applied materials & interfaces.

[10]  D. Kaplan,et al.  Silk dissolution and regeneration at the nanofibril scale. , 2014, Journal of materials chemistry. B.

[11]  B. Zuo,et al.  Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method. , 2014, Materials science & engineering. C, Materials for biological applications.

[12]  A. Terry,et al.  Silk protein aggregation kinetics revealed by Rheo-IR. , 2014, Acta biomaterialia.

[13]  Fritz Vollrath,et al.  Thermally induced changes in dynamic mechanical properties of native silks. , 2013, Biomacromolecules.

[14]  David L. Kaplan,et al.  Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals , 2013, Scientific Reports.

[15]  F. Vollrath,et al.  Mechanical and thermal degradation properties of silk from African wild silkmoths , 2013 .

[16]  K. Lee,et al.  Molecular weight distribution and solution properties of silk fibroins with different dissolution conditions. , 2012, International journal of biological macromolecules.

[17]  D. Kaplan,et al.  Materials fabrication from Bombyx mori silk fibroin , 2011, Nature Protocols.

[18]  Guangyu Zhang,et al.  Production of silk sericin/silk fibroin blend nanofibers , 2011, Nanoscale research letters.

[19]  Z. Shao,et al.  Synchrotron FTIR microspectroscopy of single natural silk fibers. , 2011, Biomacromolecules.

[20]  Xiaojing Wu A theoretical study on ion solvation of CaCl2/methanol solution , 2011 .

[21]  David L Kaplan,et al.  Water-insoluble silk films with silk I structure. , 2010, Acta biomaterialia.

[22]  M. Burghammer,et al.  Thermal behavior of Bombyx mori silk: evolution of crystalline parameters, molecular structure, and mechanical properties. , 2007, Biomacromolecules.

[23]  David L Kaplan,et al.  Silk as a Biomaterial. , 2007, Progress in polymer science.

[24]  G. Pálinkás,et al.  Solvation of calcium ion in methanol: Comparison of diffraction studies and molecular dynamics simulation , 2006 .

[25]  E. Hawlicka,et al.  Solvation of Ca2+ in aqueous methanol—MD simulation studies , 2006 .

[26]  T. Scheibel,et al.  Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm , 2006 .

[27]  R. Naik,et al.  Thermally Induced α-Helix to β-Sheet Transition in Regenerated Silk Fibers and Films , 2005 .

[28]  Z. Shao,et al.  Effect of metallic ions on silk formation in the Mulberry silkworm, Bombyx mori. , 2005, The journal of physical chemistry. B.

[29]  G. Pálinkás,et al.  Solvation of calcium ion in polar solvents: An X-ray diffraction and ab initio study , 2004 .

[30]  A. Chialvo,et al.  The structure of CaCl2 aqueous solutions over a wide range of concentration. Interpretation of diffraction experiments via molecular simulation , 2003 .

[31]  F. N. Braun,et al.  Modelling self assembly of natural silk solutions. , 2003, International journal of biological macromolecules.

[32]  Chenhua Zhao,et al.  Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro‐iso‐propanol solvent system , 2003, Biopolymers.

[33]  S. Hudson,et al.  Dissolution of Bombyx mori silk fibroin in the calcium nitrate tetrahydrate-methanol system and aspects of wet spinning of fibroin solution. , 2003, Biomacromolecules.

[34]  Tetsuo Asakura,et al.  Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method , 2003 .

[35]  Ivan Martin,et al.  Silk matrix for tissue engineered anterior cruciate ligaments. , 2002, Biomaterials.

[36]  Juming Yao,et al.  Artificial Spinning and Characterization of Silk Fiber from Bombyx mori Silk Fibroin in Hexafluoroacetone Hydrate , 2002 .

[37]  Hiromi Yamada,et al.  Preparation of undegraded native molecular fibroin solution from silkworm cocoons , 2001 .

[38]  M. Chance,et al.  Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. , 2001, Biophysical chemistry.

[39]  A. Mathur,et al.  The dissolution and characterization of Bombyx mori silk fibroin in calcium nitrate‐methanol solution and the regeneration of films , 1997 .

[40]  D. Kaplan,et al.  Silk polymers : materials science and biotechnology , 1993 .

[41]  D. Kaplan,et al.  Liquid crystallinity of natural silk secretions , 1991, Nature.