Preparation and simulation of lead free NBBT/epoxy 1–3 piezoelectric composites for high frequency medical ultrasound

[1]  Da Huo,et al.  Increasing Performances of 1–3 Piezocomposite Ultrasonic Transducer by Alternating Current Poling Method , 2022, Micromachines.

[2]  R. Surmenev,et al.  Magnetoelectric coupling studies in lead-free multiferroic (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3−(Ni0.7Zn0.3)Fe2O4 ceramic composites , 2022, Ceramics International.

[3]  M. Surmeneva,et al.  Magnetoelectric effect: principles and applications in biology and medicine– a review , 2021, Materials today. Bio.

[4]  Xiangyong Zhao,et al.  Fabrication and high acoustic performance of high frequency needle ultrasound transducer with PMN-PT/Epoxy 1-3 piezoelectric composite prepared by dice and fill method , 2021 .

[5]  K. Yao,et al.  KNNS-BNZH Lead-Free 1–3 Piezoelectric Composite for Ultrasonic and Photoacoustic Imaging , 2019, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[6]  Xiaoning Jiang,et al.  A Micromachined Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystal Composite Circular Array for Intravascular Ultrasound Imaging. , 2019, Journal of engineering and science in medical diagnostics and therapy.

[7]  C. Bowen,et al.  1‐3‐Type Composites Based on Ferroelectrics: Electromechanical Coupling, Figures of Merit, and Piezotechnical Energy‐Harvesting Applications , 2018 .

[8]  Paul A. Dayton,et al.  Phantom evaluation of stacked-type dual-frequency 1-3 composite transducers: A feasibility study on intracavitary acoustic angiography. , 2015, Ultrasonics.

[9]  Limei Zheng,et al.  Complete set of material constants of 0.95(Na0.5Bi0.5)TiO3-0.05BaTiO3 lead-free piezoelectric single crystal and the delineation of extrinsic contributions , 2013 .

[10]  K. Lam,et al.  Lead-free piezoelectric single crystal based 1–3 composites for ultrasonic transducer applications , 2012 .

[11]  S. Rhee,et al.  60 MHz PMN-PT based 1-3 composite transducer for IVUS imaging , 2008, 2008 IEEE Ultrasonics Symposium.

[12]  Xiangyong Zhao,et al.  Growth and characterization of Na0.5Bi0.5TiO3–BaTiO3 lead-free piezoelectric crystal by the TSSG method , 2008 .

[13]  K. Lam,et al.  Phase structure and electrical properties of K0.5Na0.5(Nb0.94Sb0.06)O3-LiTaO3 lead-free piezoelectric ceramics , 2008 .

[14]  Danfeng Yang,et al.  Growth and some electrical properties of lead-free piezoelectric crystals (Na1/2Bi1/2)TiO3 and (Na1/2Bi1/2)TiO3–BaTiO3 prepared by a Bridgman method , 2005 .

[15]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[16]  X. X. Wang,et al.  Electromechanical and ferroelectric properties of (Bi1∕2Na1∕2)TiO3–(Bi1∕2K1∕2)TiO3–BaTiO3 lead-free piezoelectric ceramics , 2004 .

[17]  S Cochran,et al.  1-3 connectivity piezoelectric ceramic-polymer composite transducers made with viscous polymer processing for high frequency ultrasound. , 2004, Ultrasonics.

[18]  K. Shung,et al.  Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[19]  C. Choy,et al.  Single crystal PMN-0.33PT/epoxy 1-3 composites for ultrasonic transducer applications , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  Siu Wing Or,et al.  Mode coupling in lead zirconate titanate/epoxy 1–3 piezocomposite rings , 2001 .

[21]  Julián Bravo-Castillero,et al.  Overall properties of piezocomposite materials 1–3 , 2001 .

[22]  Haosu Luo,et al.  Growth and characterization of relaxor ferroelectric PMNT single crystals , 1999 .

[23]  Yet-Ming Chiang,et al.  Lead-free high-strain single-crystal piezoelectrics in the alkaline–bismuth–titanate perovskite family , 1998 .

[24]  Dominique Certon,et al.  Lateral resonances in 1–3 piezoelectric periodic composite: Modeling and experimental results , 1997 .

[25]  F. S. Foster,et al.  Beyond 30 MHz [applications of high-frequency ultrasound imaging] , 1996 .

[26]  L. E. Cross,et al.  Piezoelectric Composite Materials for Ultrasonic Transducer Applications. Part I: Resonant Modes of Vibration of PZT Rod-Polymer Composites , 1985, IEEE Transactions on Sonics and Ultrasonics.

[27]  R. Krimholtz,et al.  New equivalent circuits for elementary piezoelectric transducers , 1970 .

[28]  A. Hladky-Hennion,et al.  Experimental Characterization of A Piezoelectric Transducer Array Taking into Account Crosstalk Phenomenon , 2020 .

[29]  Hajime Nagata,et al.  Current status and prospects of lead-free piezoelectric ceramics , 2005 .

[30]  B. Auld,et al.  Modeling 1-3 composite piezoelectrics: thickness-mode oscillations , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[31]  B. Auld,et al.  Acoustic Wave Vibrations in Periodic Composite Plates , 1984 .