A Class of Path-Following Interior-Point Methods for $$P_*(\kappa )$$P∗(κ)-Horizontal Linear Complementarity Problems
暂无分享,去创建一个
[1] Josef Stoer,et al. Infeasible-interior-point paths for sufficient linear complementarity problems and their analyticity , 1998, Math. Program..
[2] Mohamed Achache,et al. A new primal-dual path-following method for convex quadratic programming , 2006 .
[3] Kees Roos,et al. A New Efficient Large-Update Primal-Dual Interior-Point Method Based on a Finite Barrier , 2002, SIAM J. Optim..
[4] J. Frédéric Bonnans,et al. Fast convergence of the simplified largest step path following algorithm , 1996, Math. Program..
[5] Yinyu Ye,et al. Improved complexity using higher-order correctors for primal-dual Dikin affine scaling Report , 1994 .
[6] Clóvis C. Gonzaga,et al. The largest step path following algorithm for monotone linear complementarity problems , 1997, Math. Program..
[7] Klaus Schittkowski,et al. More test examples for nonlinear programming codes , 1981 .
[8] Masao Fukushima,et al. A matrix-splitting method for symmetric affine second-order cone complementarity problems , 2005 .
[9] Narendra Karmarkar,et al. A new polynomial-time algorithm for linear programming , 1984, Comb..
[10] M. El Ghami,et al. New Primal-dual Interior-point Methods Based on Kernel Functions , 2005 .
[11] Shinji Mizuno,et al. On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming , 1993, Math. Oper. Res..
[12] Jean-Philippe Vial,et al. Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.
[13] Yan-Qin Bai,et al. Polynomial interior-point algorithms for P*(k) horizontal linear complementarity problem , 2009, J. Comput. Appl. Math..
[14] Yan-Qin Bai,et al. A Class of Polynomial Interior Point Algorithms for the Cartesian P-Matrix Linear Complementarity Problem over Symmetric Cones , 2012, J. Optim. Theory Appl..
[15] Nimrod Megiddo,et al. A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.
[16] Yanqin Bai,et al. Primal-dual Interior-point Algorithms for Second-order Cone Optimization Based on a New Parametric Kernel Function , 2007 .
[17] Naihua Xiu,et al. A smoothing Gauss-Newton method for the generalized HLCP , 2001 .
[18] Yinyu Ye,et al. An Asymptotical O(√(n) L)-Iteration Path-Following Linear Programming Algorithm That Uses Wide Neighborhoods , 1996, SIAM J. Optim..
[19] H. Mansouri,et al. A Full-Newton step infeasible-interior-point algorithm for P*(k)-horizontal linear complementarity problems , 2015 .
[20] Goran Lesaja,et al. A New Class of Polynomial Interior-Point Algorithms for P *(κ)-Linear Complementarity Problems , 2008 .
[21] Kees Roos,et al. A polynomial-time algorithm for linear optimization based on a new simple kernel function , 2003, Optim. Methods Softw..
[22] Kees Roos,et al. Unified Analysis of Kernel-Based Interior-Point Methods for P*(Kappa)-Linear Complementarity Problems , 2010, SIAM J. Optim..
[23] Richard W. Cottle,et al. Linear Complementarity Problem. , 1992 .
[24] Mauricio G. C. Resende,et al. A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and Its Power Series Extension , 1990, Math. Oper. Res..
[25] Cosmin G. Petra,et al. Corrector-predictor methods for sufficient linear complementarity problems , 2011, Comput. Optim. Appl..
[26] Jiming Peng,et al. Self-regular functions and new search directions for linear and semidefinite optimization , 2002, Math. Program..
[27] Mihai Anitescu,et al. An infeasible-interior-point predictor-corrector algorithm for theP*-geometric LCP , 1997 .
[28] Hossein Mansouri,et al. A New Full-Newton Step O(n) Infeasible Interior-Point Algorithm for P*(κ)-horizontal Linear Complementarity Problems , 2014, Comput. Sci. J. Moldova.
[29] Kok Lay Teo,et al. A full-Newton step feasible interior-point algorithm for P∗(κ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_*(\kap , 2013, Journal of Global Optimization.
[30] Changfeng Ma,et al. The convergence of a one-step smoothing Newton method for P0-NCP based on a new smoothing NCP-function , 2008 .
[31] Hossein Mansouri,et al. Polynomial interior-point algorithm for P*${(\kappa)}$ horizontal linear complementarity problems , 2012, Numerical Algorithms.
[32] Kees Roos,et al. A Comparative Study of Kernel Functions for Primal-Dual Interior-Point Algorithms in Linear Optimization , 2004, SIAM J. Optim..
[33] Jiming Peng,et al. Self-regularity - a new paradigm for primal-dual interior-point algorithms , 2002, Princeton series in applied mathematics.