Incorporating Angular Information into Parametric Models

The problem is considered of fitting a parametrically defined model in two or three dimensions to observed data, when angular information about the measured data points is available. Gauss-Newton methods based on correct separation of variables are developed. Some numerical results are included.

[1]  Mark Berman,et al.  Incorporating Angular Information into Models for Stone Circle Data , 1985 .

[2]  Ping Liang,et al.  Representation and recognition of surface shapes in range images: A differential geometry approach , 1990, Comput. Vis. Graph. Image Process..

[3]  AN EFFICIENT SEPARATION-OF-VARIABLES APPROACH TO PARAMETRIC ORTHOGONAL DISTANCE REGRESSION , 2000 .

[5]  D. Zwick,et al.  Applications of orthogonal distance regression in metrology , 1997 .

[6]  M. Berman Estimating the Parameters of a Circle When Angular Differences are Known , 1983 .

[7]  G. A. Watson,et al.  Least Squares Fitting of Circles and Ellipses to Measured Data , 1999 .

[8]  Baba C. Vemuri,et al.  On Three-Dimensional Surface Reconstruction Methods , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  G. Watson,et al.  Implicit Surface Fitting Using Directional Constraints , 2001 .

[10]  G. A. Watson,et al.  Some Problems in Orthogonal Distance and Non-Orthogonal Distance Regression , 2001 .

[11]  Dorothy A. Anderson The Circular Structural Model , 1981 .

[12]  Hans-Jürgen Warnecke,et al.  Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola , 2001, Pattern Recognit..

[13]  Ralph R. Martin,et al.  Faithful Least-Squares Fitting of Spheres, Cylinders, Cones and Tori for Reliable Segmentation , 1998, ECCV.

[14]  Sung Joon Ahn,et al.  Geometric Fitting of Line, Plane, Circle, Sphere, and Ellipse , 1999 .

[15]  Helmuth Späth,et al.  Estimating the parameters of an ellipse when angular differences are known , 1999, Comput. Stat..