On semiclassical and universal inequalities for eigenvalues of quantum graphs
暂无分享,去创建一个
[1] K. Ruedenberg,et al. Free‐Electron Network Model for Conjugated Systems. I. Theory , 1953 .
[2] Rupert L. Frank,et al. Eigenvalue estimates for Schrödinger operators on metric trees , 2007, 0710.5500.
[3] Evans M. Harrell,et al. Universal Bounds and Semiclassical Estimates for Eigenvalues of Abstract Schrödinger Operators , 2010, SIAM J. Math. Anal..
[4] D. Hundertmark. Some Bound State Problems in Quantum Mechanics , 2007 .
[5] Sharp Lieb-Thirring inequalities in high dimensions , 1999, math-ph/9903007.
[6] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .
[7] L. Hermi,et al. On Riesz Means of Eigenvalues , 2007, 0712.4088.
[8] G. Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .
[9] Linus Pauling,et al. The Diamagnetic Anisotropy of Aromatic Molecules , 1936 .
[10] W. Thirring,et al. Quantum mathematical physics : atoms, molecules and large systems , 2002 .
[11] E. Harrell,et al. Differential inequalities for Riesz means and Weyl-type bounds for eigenvalues , 2007, 0705.3673.
[12] A. Laptev,et al. Recent results on Lieb-Thirring inequalities , 2000 .
[13] P. Kuchment,et al. Quantum Graphs and Their Applications , 2006 .
[14] G. Pólya,et al. ON THE RATIO OF CONSECUTIVE EIGENVALUES , 1956 .
[15] Peter Kuchment,et al. Analysis on graphs and its applications , 2008 .
[16] E. Lieb,et al. Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities , 2002 .
[17] E. Harrell,et al. On trace identities and universal eigenvalue estimates for some partial differential operators , 1997 .
[18] E. Lieb,et al. On semi-classical bounds for eigenvalues of Schrödinger operators , 1978 .
[19] E. Lieb. The Number of Bound States of One-Body Schroedinger Operators and the Weyl Problem (代数解析学の最近の発展) , 1979 .
[20] T. Weidl. On the Lieb-Thirring constants L ?,1 for ??1/2 , 1996 .
[21] Mark S. Ashbaugh,et al. The universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Protter, and H C Yang , 2002 .
[22] Pavel Kurasov. Schrödinger operators on graphs and geometry I: Essentially bounded potentials , 2008 .
[23] E. Harrell,et al. Trace identities for commutators, with applications to the distribution of eigenvalues , 2009, 0903.0563.
[24] M. Birman,et al. The spectrum of singular boundary problems , 1961 .
[25] M. Cwikel. Weak Type Estimates for Singular Values and the Number of Bound States of Schrodinger Operators , 1977 .