A Multistep Legendre-Gauss Spectral Collocation Method for Nonlinear Volterra Integral Equations

We introduce a multistep Legendre--Gauss spectral collocation method for the nonlinear Volterra integral equations of the second kind. This method is easy to implement and possesses high order accuracy. In addition, it is very suitable for long time calculations. We also derive the optimal convergence of the $hp$-version of the multistep collocation method under the $L^2$-norm. Numerical experiments confirm the theoretical expectations.

[1]  Hermann Brunner,et al.  Runge-Kutta theory for Volterra integral equations of the second kind , 1982 .

[2]  Hermann Brunner,et al.  The Numerical Solution of Nonlinear Volterra Integral Equations of the Second Kind by Collocation and Iterated Collocation Methods , 1987 .

[3]  H. Tal-Ezer,et al.  Spectral methods in time for hyperbolic equations , 1986 .

[4]  Ivo Babuška,et al.  The h‐p version of the finite element method for parabolic equations. Part I. The p‐version in time , 1989 .

[5]  J. Boyd Chebyshev and Fourier Spectral Methods , 1989 .

[6]  Rossana Vermiglio,et al.  Stability Analysis of Runge-Kutta Methods for Volterra Integral Equations of the Second Kind , 1990 .

[7]  Glenn R. Ierley,et al.  Spectral methods in time for a class of parabolic partial differential equations , 1992 .

[8]  D. Funaro Polynomial Approximation of Differential Equations , 1992 .

[9]  Gamal N. Elnagar,et al.  Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations , 1996 .

[10]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[11]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[12]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..

[13]  Hermann Brunner,et al.  A Spline Collocation Method for Linear Volterra Integro-Differential Equations with Weakly Singular Kernels , 2001 .

[14]  Jian-guo Tang,et al.  Single and Multi-Interval Legendre τ-Methods in Time for Parabolic Equations , 2002, Adv. Comput. Math..

[15]  Ben-yu Guo,et al.  Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces , 2004, J. Approx. Theory.

[16]  N. Higham The numerical stability of barycentric Lagrange interpolation , 2004 .

[17]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[18]  Thomas P. Wihler,et al.  An A Priori Error Analysis of the hp-Version of the Continuous Galerkin FEM for Nonlinear Initial Value Problems , 2005, J. Sci. Comput..

[19]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[20]  Tang,et al.  ON SPECTRAL METHODS FOR VOLTERRA INTEGRAL EQUATIONS AND THE CONVERGENCE ANALYSIS , 2008 .

[21]  Ben-Yu Guo,et al.  Legendre--Gauss collocation method for initial value problems of second order ordinary differential equations , 2009 .

[22]  Beatrice Paternoster,et al.  Multistep collocation methods for Volterra Integral Equations , 2009 .

[23]  Ben-yu Guo,et al.  Legendre–Gauss collocation methods for ordinary differential equations , 2009, Adv. Comput. Math..

[24]  Yanping Chen,et al.  Spectral methods for weakly singular Volterra integral equations with smooth solutions , 2009, J. Comput. Appl. Math..

[25]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[26]  Zhongqing Wang,et al.  A LEGENDRE-GAUSS COLLOCATION METHOD FOR NONLINEAR DELAY DIFFERENTIAL EQUATIONS , 2010 .

[27]  Ben-yu Guo,et al.  Spectral method on quadrilaterals , 2010, Math. Comput..

[28]  Tao Tang,et al.  Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel , 2010, Math. Comput..

[29]  Zhongqing Wang,et al.  A spectral collocation method for solving initial value problemsof first order ordinary differential equations , 2010 .

[30]  K. Maleknejad,et al.  Numerical Solution of Nonlinear Volterra Integral Equations with Nonincreasing Kernel and an Application , 2011 .

[31]  HAIYONG WANG,et al.  On the convergence rates of Legendre approximation , 2011, Math. Comput..

[32]  E. Russo,et al.  Highly stable Runge-Kutta methods for Volterra integral equations , 2012 .

[33]  Ben-yu Guo,et al.  Legendre-Gauss-Radau Collocation Method for Solving Initial Value Problems of First Order Ordinary Differential Equations , 2012, J. Sci. Comput..

[34]  Tao Tang,et al.  Parallel in Time Algorithm with Spectral-Subdomain Enhancement for Volterra Integral Equations , 2013, SIAM J. Numer. Anal..