Stability of inclusions: characterizations via suitable Lipschitz functions and algorithms

This article deals with basic notions of local stability of solutions to generalized equations. The Aubin property, calmness, strong Lipschitz stability and other (Lipschitz) stability concepts are characterized by two classical approaches: by monotonicity of assigned Lipschitz functions and directly via the main applications of stability statements – the behavior of solutions methods. In this way, ‘stability’ will be characterized by several new conditions. We also show how known concepts, which are mainly based on characterizations via generalized derivatives and are widely distributed in the literature, can be derived in an essentially self-contained and straightforward manner. §Dedicated to Professor Diethard Pallaschke on the occasion of his 65th birthday.

[1]  Defeng Sun,et al.  On NCP-Functions , 1999, Comput. Optim. Appl..

[2]  B. Mordukhovich Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions , 1993 .

[3]  Adam B. Levy,et al.  Stability of Locally Optimal Solutions , 1999, SIAM J. Optim..

[4]  I. Ekeland On the variational principle , 1974 .

[5]  R. Henrion,et al.  A Subdifferential Condition for Calmness of Multifunctions , 2001 .

[6]  R. Cominetti Metric regularity, tangent sets, and second-order optimality conditions , 1990 .

[7]  Vincent J. Mancuso SOME MAPPING THEOREMS , 1971 .

[8]  Bernd Kummer,et al.  Metric regularity: characterizations, nonsmooth variations and successive approximation ∗ , 1999 .

[9]  S. Dolecki,et al.  Exact Penalties for Local Minima , 1979 .

[10]  Diethard Klatte,et al.  Strong Lipschitz Stability of Stationary Solutions for Nonlinear Programs and Variational Inequalities , 2005, SIAM J. Optim..

[11]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[12]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[13]  Adam B. Levy Lipschitzian Multifunctions and a Lipschitzian Inverse Mapping Theorem , 2001, Math. Oper. Res..

[14]  Diethard Klatte,et al.  Nonsmooth Equations in Optimization: "Regularity, Calculus, Methods And Applications" , 2006 .

[15]  S. M. Robinson Generalized equations and their solutions, Part I: Basic theory , 1979 .

[16]  R. Tyrrell Rockafellar,et al.  Sensitivity analysis for nonsmooth generalized equations , 1992, Math. Program..

[17]  Diethard Klatte,et al.  Generalized Kojima–Functions and Lipschitz Stability of Critical Points , 1999, Comput. Optim. Appl..

[18]  Bernd Kummer,et al.  Generalized equations: Solvability and regularity , 1984 .

[19]  A. Ioffe Regular points of Lipschitz functions , 1979 .

[20]  Alfred Auslender,et al.  Stability in Mathematical Programming with Nondifferentiable Data , 1984 .

[21]  B. S. Mordukhovich,et al.  Mixed Coderivatives of Set–Valued Mappings in Variational Analysis , 1998 .

[22]  M. Kojima Strongly Stable Stationary Solutions in Nonlinear Programs. , 1980 .

[23]  Peter. Fusek,et al.  Isolated zeros of lipschitzian metrically regular -Functions , 2001 .

[24]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[25]  Bernd Kummer An implicit-function theorem for C0, 1-equations and parametric C1, 1-optimization , 1991 .

[26]  Lionel Thibault,et al.  Subdifferentials of compactly lipschitzian vector-valued functions , 1980 .

[27]  J. Hiriart-Urruty,et al.  Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .

[28]  A. Griewank The local convergence of Broyden-like methods on Lipschitzian problems in Hilbert spaces , 1987 .

[29]  B. Kummer Newton’s Method Based on Generalized Derivatives for Nonsmooth Functions: Convergence Analysis , 1992 .

[30]  Lionel Thibault,et al.  On generalized differentials and subdifferentials of Lipschitz vector-valued functions , 1982 .

[31]  B. Bank,et al.  Non-Linear Parametric Optimization , 1983 .

[32]  Diethard Klatte,et al.  Constrained Minima and Lipschitzian Penalties in Metric Spaces , 2002, SIAM J. Optim..

[33]  James V. Burke,et al.  Calmness and exact penalization , 1991 .

[34]  R. Tyrrell Rockafellar,et al.  Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets , 1996, SIAM J. Optim..

[35]  A. Dontchev Local convergence of the Newton method for generalized equations , 1996 .

[36]  Asen L. Dontchev,et al.  Regularity and Conditioning of Solution Mappings in Variational Analysis , 2004 .

[37]  Diethard Pallaschke,et al.  Foundations of Mathematical Optimization , 1997 .

[38]  B. Kummer Lipschitzian inverse functions, directional derivatives, and applications inC1,1 optimization , 1991 .

[39]  Daniel Ralph,et al.  Sensitivity analysis of composite piecewise smooth equations , 1997, Math. Program..

[40]  Bernd Kummer,et al.  Inverse functions of pseudo regular mappings and regularity conditions , 2000, Math. Program..

[41]  Francisco Facchinei,et al.  A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems , 1997, Math. Program..

[42]  R. Rockafellar,et al.  Proto-derivative formulas for basic subgradient mappings in mathematical programming , 1994 .

[43]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[44]  ADAM B. LEVY,et al.  Solution Sensitivity from General Principles , 2001, SIAM J. Control. Optim..

[45]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[46]  S. M. Robinson Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .

[47]  R. Rockafellar,et al.  Variational conditions and the proto-differentiation of partial subgradient mappings , 1996 .

[48]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[49]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[50]  Stephen M. Robinson,et al.  Variational conditions with smooth constraints: structure and analysis , 2003, Math. Program..

[51]  M. Kojima,et al.  EXTENSION OF NEWTON AND QUASI-NEWTON METHODS TO SYSTEMS OF PC^1 EQUATIONS , 1986 .

[52]  B. Mordukhovich Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis , 1994 .

[53]  R. Rockafellar,et al.  Characterizations of Lipschitzian Stability in Nonlinear Programming , 2020 .

[54]  R. Rockafellar First- and second-order epi-differentiability in nonlinear programming , 1988 .

[55]  F. Clarke,et al.  Topological Geometry: THE INVERSE FUNCTION THEOREM , 1981 .

[56]  A. Ioffe Metric regularity and subdifferential calculus , 2000 .

[57]  Andreas Fischer,et al.  Solution of monotone complementarity problems with locally Lipschitzian functions , 1997, Math. Program..

[58]  R. Rockafellar,et al.  Prox-regular functions in variational analysis , 1996 .

[59]  A. Ya. Kruger Strict (ε, δ)-Subdifferentials and Extremality Conditions , 2002 .