Lattice thermal conductivity of MgO at conditions of Earth’s interior
暂无分享,去创建一个
[1] R. Jeanloz,et al. Thermal conductivity of corundum and periclase and implications for the lower mantle , 1997 .
[2] Thorne Lay,et al. The core–mantle boundary layer and deep Earth dynamics , 1998, Nature.
[3] B. Militzer,et al. Measurement of thermal diffusivity at high pressure using a transient heating technique , 2007 .
[4] A. Hofmeister. Pressure dependence of thermal transport properties , 2007, Proceedings of the National Academy of Sciences.
[5] A. Berga,et al. The combined influences of variable thermal conductivity , temperature-and pressure-dependent viscosity and core – mantle coupling on thermal evolution , 2006 .
[6] Anne M. Hofmeister,et al. Inference of high thermal transport in the lower mantle from laser-flash experiments and the damped harmonic oscillator model , 2008 .
[7] Donald L. Turcotte,et al. Geodynamics : applications of continuum physics to geological problems , 1982 .
[8] W. DeGrado,et al. Seismostratigraphy and Thermal Structure of Earth ’ s Core-Mantle Boundary Region , 2007 .
[9] H. Yukutake,et al. Thermal conductivity of NaCl, MgO, coesite and stishovite up to 40 kbar , 1978 .
[10] M. Osako,et al. Thermal diffusivity of MgSiO3 perovskite , 1991 .
[11] L. Dubrovinsky,et al. Optical Absorption and Radiative Thermal Conductivity of Silicate Perovskite to 125 Gigapascals , 2008, Science.
[12] D. L. Anderson,et al. Preliminary reference earth model , 1981 .
[13] J. Ranninger. Lattice Thermal Conductivity , 1965 .
[14] V. Struzhkin,et al. Reduced Radiative Conductivity of Low-Spin (Mg,Fe)O in the Lower Mantle , 2006, Science.
[15] P. Beck,et al. Radiative conductivity in the Earth’s lower mantle , 2008, Nature.
[16] C. Brenninkmeijer,et al. Assessment of 15N15N16O as a tracer of stratospheric processes , 2003 .
[17] S. Tamura,et al. Isotope scattering of dispersive phonons in Ge , 1983 .
[18] D. Gubbins,et al. Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure , 2007 .
[19] K. Hirose,et al. Pressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications , 2008 .
[20] R. K. Kirby,et al. Thermophysical Properties of Matter - the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys , 1975 .
[21] John Ziman,et al. Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .
[22] S. Spiliopoulos,et al. The earth's thermal profile: Is there a mid-mantle thermal boundary layer? , 1984 .
[23] H. H. Schloessin,et al. Lattice and radiative thermal conductivity variations through high p, T polymorphic structure transitions and melting points , 1982 .
[24] Introduction to the Physics of the Earth's Interior , 1991 .
[25] Thermal diffusivity of periclase at high temperatures and high pressures , 1997 .
[26] A. Duba,et al. Optical absorption and radiative heat transport in olivine at high temperature , 1979 .
[27] G. A. Slack,et al. Thermal Conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 Crystals from 3 to 300K , 1962 .
[28] S. Clark. Radiative transfer ia the Earth's mantle , 1957 .
[29] Raymond Jeanloz,et al. Temperature distribution in the crust and mantle , 1986 .
[30] A. Hofmeister. Dependence of diffusive radiative transfer on grain-size, temperature, and Fe-content: Implications for mantle processes , 2005 .
[31] David Mainprice,et al. Thermal diffusivity of olivine single‐crystals and polycrystalline aggregates at ambient conditions—a comparison , 2003 .
[32] L. Lines. Introduction to the Physics of the Earth's Interior , 2001 .
[33] L. Dubrovinsky,et al. Letter. Optical absorption spectra of ferropericlase to 84 GPa , 2007 .
[34] J. Callaway. Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .
[35] Xiaoli Tang,et al. Pressure dependence of harmonic and anharmonic lattice dynamics in MgO: A first-principles calculation and implications for lattice thermal conductivity , 2009 .
[36] A. Hofmeister,et al. Mantle values of thermal conductivity and the geotherm from phonon lifetimes , 1999, Science.
[37] G. Bäckström,et al. Techniques for determining thermal conductivity and heat capacity under hydrostatic pressure , 1986 .
[38] J. M. Brown,et al. Homogeneity and temperatures in the lower mantle , 1985 .
[39] Louise H. Kellogg,et al. Can large increases in viscosity and thermal conductivity preserve large-scale heterogeneity in the mantle? , 2007 .
[40] A. Hofmeister. Scale aspects of heat transport in the diamond anvil cell, in spectroscopic modeling, and in Earth's mantle: Implications for secular cooling , 2010 .
[41] O. Anderson. The Earth's core and the phase diagram of iron , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[42] J. Brown. Interpretation of the D″ zone at the base of the mantle: Dependence on assumed values of thermal conductivity , 1986 .
[43] Thorne Lay,et al. Core–mantle boundary heat flow , 2008 .
[44] W. Kingery,et al. THERMAL CONDUCTIVITY. XIII. EFFECT OF MICROSTRUCTURE ON CONDUCTIVITY OF SINGLE-PHASE CERAMICS , 1957 .