Lattice thermal conductivity of MgO at conditions of Earth’s interior

Thermal conductivity of the Earth’s lower mantle greatly impacts the mantle convection style and affects the heat conduction from the core to the mantle. Direct laboratory measurement of thermal conductivity of mantle minerals remains a technical challenge at the pressure-temperature (P-T) conditions relevant to the lower mantle, and previously estimated values are extrapolated from low P-T data based on simple empirical thermal transport models. By using a numerical technique that combines first-principles electronic structure theory and Peierls–Boltzmann transport theory, we predict the lattice thermal conductivity of MgO, previously used to estimate the thermal conductivity in the Earth, at conditions from ambient to the core-mantle boundary (CMB). We show that our first-principles technique provides a realistic model for the P-T dependence of lattice thermal conductivity of MgO at conditions from ambient to the CMB, and we propose thermal conductivity profiles of MgO in the lower mantle based on geotherm models. The calculated conductivity increases from 15 –20 W/K-m at the 670 km seismic discontinuity to 40 –50 W/K-m at the CMB. This large depth variation in calculated thermal conductivity should be included in models of mantle convection, which has been traditionally studied based on the assumption of constant conductivity.

[1]  R. Jeanloz,et al.  Thermal conductivity of corundum and periclase and implications for the lower mantle , 1997 .

[2]  Thorne Lay,et al.  The core–mantle boundary layer and deep Earth dynamics , 1998, Nature.

[3]  B. Militzer,et al.  Measurement of thermal diffusivity at high pressure using a transient heating technique , 2007 .

[4]  A. Hofmeister Pressure dependence of thermal transport properties , 2007, Proceedings of the National Academy of Sciences.

[5]  A. Berga,et al.  The combined influences of variable thermal conductivity , temperature-and pressure-dependent viscosity and core – mantle coupling on thermal evolution , 2006 .

[6]  Anne M. Hofmeister,et al.  Inference of high thermal transport in the lower mantle from laser-flash experiments and the damped harmonic oscillator model , 2008 .

[7]  Donald L. Turcotte,et al.  Geodynamics : applications of continuum physics to geological problems , 1982 .

[8]  W. DeGrado,et al.  Seismostratigraphy and Thermal Structure of Earth ’ s Core-Mantle Boundary Region , 2007 .

[9]  H. Yukutake,et al.  Thermal conductivity of NaCl, MgO, coesite and stishovite up to 40 kbar , 1978 .

[10]  M. Osako,et al.  Thermal diffusivity of MgSiO3 perovskite , 1991 .

[11]  L. Dubrovinsky,et al.  Optical Absorption and Radiative Thermal Conductivity of Silicate Perovskite to 125 Gigapascals , 2008, Science.

[12]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[13]  J. Ranninger Lattice Thermal Conductivity , 1965 .

[14]  V. Struzhkin,et al.  Reduced Radiative Conductivity of Low-Spin (Mg,Fe)O in the Lower Mantle , 2006, Science.

[15]  P. Beck,et al.  Radiative conductivity in the Earth’s lower mantle , 2008, Nature.

[16]  C. Brenninkmeijer,et al.  Assessment of 15N15N16O as a tracer of stratospheric processes , 2003 .

[17]  S. Tamura,et al.  Isotope scattering of dispersive phonons in Ge , 1983 .

[18]  D. Gubbins,et al.  Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure , 2007 .

[19]  K. Hirose,et al.  Pressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications , 2008 .

[20]  R. K. Kirby,et al.  Thermophysical Properties of Matter - the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys , 1975 .

[21]  John Ziman,et al.  Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .

[22]  S. Spiliopoulos,et al.  The earth's thermal profile: Is there a mid-mantle thermal boundary layer? , 1984 .

[23]  H. H. Schloessin,et al.  Lattice and radiative thermal conductivity variations through high p, T polymorphic structure transitions and melting points , 1982 .

[24]  Introduction to the Physics of the Earth's Interior , 1991 .

[25]  Thermal diffusivity of periclase at high temperatures and high pressures , 1997 .

[26]  A. Duba,et al.  Optical absorption and radiative heat transport in olivine at high temperature , 1979 .

[27]  G. A. Slack,et al.  Thermal Conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 Crystals from 3 to 300K , 1962 .

[28]  S. Clark Radiative transfer ia the Earth's mantle , 1957 .

[29]  Raymond Jeanloz,et al.  Temperature distribution in the crust and mantle , 1986 .

[30]  A. Hofmeister Dependence of diffusive radiative transfer on grain-size, temperature, and Fe-content: Implications for mantle processes , 2005 .

[31]  David Mainprice,et al.  Thermal diffusivity of olivine single‐crystals and polycrystalline aggregates at ambient conditions—a comparison , 2003 .

[32]  L. Lines Introduction to the Physics of the Earth's Interior , 2001 .

[33]  L. Dubrovinsky,et al.  Letter. Optical absorption spectra of ferropericlase to 84 GPa , 2007 .

[34]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[35]  Xiaoli Tang,et al.  Pressure dependence of harmonic and anharmonic lattice dynamics in MgO: A first-principles calculation and implications for lattice thermal conductivity , 2009 .

[36]  A. Hofmeister,et al.  Mantle values of thermal conductivity and the geotherm from phonon lifetimes , 1999, Science.

[37]  G. Bäckström,et al.  Techniques for determining thermal conductivity and heat capacity under hydrostatic pressure , 1986 .

[38]  J. M. Brown,et al.  Homogeneity and temperatures in the lower mantle , 1985 .

[39]  Louise H. Kellogg,et al.  Can large increases in viscosity and thermal conductivity preserve large-scale heterogeneity in the mantle? , 2007 .

[40]  A. Hofmeister Scale aspects of heat transport in the diamond anvil cell, in spectroscopic modeling, and in Earth's mantle: Implications for secular cooling , 2010 .

[41]  O. Anderson The Earth's core and the phase diagram of iron , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[42]  J. Brown Interpretation of the D″ zone at the base of the mantle: Dependence on assumed values of thermal conductivity , 1986 .

[43]  Thorne Lay,et al.  Core–mantle boundary heat flow , 2008 .

[44]  W. Kingery,et al.  THERMAL CONDUCTIVITY. XIII. EFFECT OF MICROSTRUCTURE ON CONDUCTIVITY OF SINGLE-PHASE CERAMICS , 1957 .