On α- and -negative imaginary systems

This paper is concerned with α- and -negative imaginary systems. The definition of α-negative imaginary transfer functions is firstly introduced. Then, the relationship between negative imaginary and α-negative imaginary transfer functions is studied. By means of the generalised inverse, an α-negative imaginary lemma is proposed to test the α-negative imaginary property of transfer functions. Also, a necessary and sufficient condition is provided for the α-stability of interconnection of negative imaginary systems. A state-feedback controller design condition is established such that the resulting system is α-negative imaginary. Moreover, the concept of α-negative imaginary transfer functions is extended to that of -negative imaginary transfer functions. Finally, the developed results are illustrated by numerical examples.

[1]  Ian R. Petersen,et al.  A negative-imaginary lemma without minimality assumptions and robust state-feedback synthesis for uncertain negative-imaginary systems , 2012, Syst. Control. Lett..

[2]  Ian R. Petersen,et al.  A Negative Imaginary Lemma and the Stability of Interconnections of Linear Negative Imaginary Systems , 2010, IEEE Transactions on Automatic Control.

[3]  Daniel W. C. Ho,et al.  Strict positive realness for linear time-delay systems , 2003, Int. J. Syst. Sci..

[4]  Pierre Apkarian,et al.  Robust pole placement in LMI regions , 1999, IEEE Trans. Autom. Control..

[5]  Brian D. O. Anderson,et al.  Network Analysis and Synthesis: A Modern Systems Theory Approach , 2006 .

[6]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[7]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[8]  Marcelo C. M. Teixeira,et al.  Robust state-derivative pole placement LMI-based designs for linear systems , 2009, Int. J. Control.

[9]  Chaohong Cai,et al.  Stability Analysis for a String of Coupled Stable Subsystems With Negative Imaginary Frequency Response , 2010, IEEE Transactions on Automatic Control.

[10]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[11]  Olivier Bachelier,et al.  D-stability of polynomial matrices , 2001 .

[12]  B. Brogliato,et al.  Dissipative Systems Analysis and Control , 2000 .

[13]  Lorenzo Ntogramatzidis,et al.  Some new results in the theory of negative imaginary systems with symmetric transfer matrix function , 2013, Autom..

[14]  Ian R. Petersen,et al.  Enforcing negative imaginary dynamics on mathematical system models , 2013, Int. J. Control.

[15]  F. M. Callier,et al.  Dissipative Systems Analysis and Control: Theory and Applications (2nd Edition)-[Book review; B. Brogliato, R. Lozano, B. Maschke] , 2007, IEEE Transactions on Automatic Control.

[16]  Yugang Niu,et al.  Adaptive sliding mode control for stochastic Markovian jumping systems with actuator degradation , 2013, Autom..

[17]  Malcolm C. Smith,et al.  A Note on Tests for Positive-Real Functions , 2009, IEEE Transactions on Automatic Control.

[18]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[19]  Dimitri Peaucelle,et al.  Robust D stabilization of a polytope of matrices , 2002 .

[20]  H. Bourlès α-Stability and robustness of large-scale interconnected systems , 1987 .

[21]  Benjamin C. Kuo,et al.  AUTOMATIC CONTROL SYSTEMS , 1962, Universum:Technical sciences.

[22]  Ian R. Petersen,et al.  Towards Controller Synthesis for Systems with Negative Imaginary Frequency Response , 2010, IEEE Transactions on Automatic Control.

[23]  Alexander Lanzon,et al.  Feedback Control of Negative-Imaginary Systems , 2010, IEEE Control Systems.

[24]  Ian R. Petersen,et al.  Generalizing Negative Imaginary Systems Theory to Include Free Body Dynamics: Control of Highly Resonant Structures With Free Body Motion , 2013, IEEE Transactions on Automatic Control.

[25]  Gjerrit Meinsma,et al.  Rank-one LMIs and Lyapunov's inequality , 2001, IEEE Trans. Autom. Control..

[26]  Ian R. Petersen,et al.  Stabilization of uncertain negative-imaginary systems via state-feedback control , 2009, 2009 European Control Conference (ECC).

[27]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[28]  James Lam,et al.  Robust integral sliding mode control for uncertain stochastic systems with time-varying delay , 2005, Autom..

[29]  Ian R. Petersen,et al.  Finite Frequency Negative Imaginary Systems , 2010, IEEE Transactions on Automatic Control.

[30]  Bernhard Maschke,et al.  Dissipative Systems Analysis and Control , 2000 .

[31]  Benjamin C. Kuo,et al.  Automatic control systems (7th ed.) , 1991 .

[32]  Ian R. Petersen,et al.  Robust performance analysis for uncertain negative‐imaginary systems , 2012 .

[33]  Ian R. Petersen,et al.  On lossless negative imaginary systems , 2009, 2009 7th Asian Control Conference.

[34]  A. TUSTIN,et al.  Automatic Control Systems , 1950, Nature.

[35]  Ian R. Petersen,et al.  Stability Robustness of a Feedback Interconnection of Systems With Negative Imaginary Frequency Response , 2008, IEEE Transactions on Automatic Control.

[36]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .