Boundary feedback control and Lyapunov stability analysis for physical networks of 2×2 hyperbolic balance laws

Sufficient dissipative boundary conditions are given for the exponential stability of equilibria in physical networks of 2 × 2 nonlinear hyperbolic balance laws under boundary feedback control. The analysis relies on the use of an explicit strict Lyapunov function.

[1]  H. Väliaho On the definity of quadratic forms subject to linear constraints , 1982 .

[2]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[3]  I. N. Sneddon,et al.  Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves , 1999 .

[4]  J. Coron On the Null Asymptotic Stabilization of the Two-Dimensional Incompressible Euler Equations in a Simply Connected Domain , 1999 .

[5]  D. Serre Systems of Conservation Laws: A Challenge for the XXIst Century , 2001 .

[6]  G. Sallet,et al.  Exponential Stability and Transfer Functions of Processes Governed by Symmetric Hyperbolic Systems , 2002 .

[7]  Guenter Leugering,et al.  On the Modelling and Stabilization of Flows in Networks of Open Canals , 2002, SIAM J. Control. Optim..

[8]  Jonathan de Halleux,et al.  Boundary feedback control in networks of open channels , 2003, Autom..

[9]  Georges Bastin,et al.  A Strict Lyapunov Function for Boundary Control of Hyperbolic Systems of Conservation Laws , 2007, IEEE Transactions on Automatic Control.

[10]  B. Piccoli,et al.  Traffic Flow on a Road Network Using the Aw–Rascle Model , 2006 .

[11]  Axel Klar,et al.  Gas flow in pipeline networks , 2006, Networks Heterog. Media.

[12]  Michael Herty,et al.  Optimization criteria for modelling intersections of vehicular traffic flow , 2006, Networks Heterog. Media.

[13]  Georges Bastin,et al.  Dissipative Boundary Conditions for One-Dimensional Nonlinear Hyperbolic Systems , 2008, SIAM J. Control. Optim..

[14]  Joseph J. Winkin,et al.  Robust boundary control of systems of conservation laws , 2008, Math. Control. Signals Syst..

[15]  With Invariant Submanifolds,et al.  Systems of Conservation Laws , 2009 .