Optimal local truncation error method for solution of 2-D elastodynamics problems with irregular interfaces and unfitted Cartesian meshes as well as for post-processing

[1]  A. Idesman,et al.  Optimal local truncation error method for solution of 3-D Poisson equation with irregular interfaces and unfitted Cartesian meshes as well as for post-processing , 2022, Adv. Eng. Softw..

[2]  M. Hillman,et al.  Temporal stability of collocation, Petrov–Galerkin, and other non-symmetric methods in elastodynamics and an energy conserving time integration , 2022, Computer Methods in Applied Mechanics and Engineering.

[3]  A. Idesman,et al.  Optimal local truncation error method to solution of 2‐D time‐independent elasticity problems with optimal accuracy on irregular domains and unfitted Cartesian meshes , 2022, International Journal for Numerical Methods in Engineering.

[4]  On Ki Angel Ling,et al.  A stable discontinuous Galerkin method for linear elastodynamics in 3D geometrically complex elastic solids using physics based numerical fluxes , 2022, Computer Methods in Applied Mechanics and Engineering.

[5]  Alexander Idesman,et al.  Optimal local truncation error method for solution of wave and heat equations for heterogeneous materials with irregular interfaces and unfitted Cartesian meshes , 2021 .

[6]  Jaime Peraire,et al.  Symplectic Hamiltonian finite element methods for linear elastodynamics , 2021 .

[7]  H. Gravenkamp,et al.  A massively parallel explicit solver for elasto-dynamic problems exploiting octree meshes , 2021, Computer Methods in Applied Mechanics and Engineering.

[8]  Michael R. Tupek,et al.  A variational multiscale immersed meshfree method for heterogeneous materials , 2021, Computational Mechanics.

[9]  H. Gravenkamp,et al.  On mass lumping and explicit dynamics in the scaled boundary finite element method , 2020 .

[10]  A. Idesman,et al.  A new numerical approach to the solution of PDEs with optimal accuracy on irregular domains and Cartesian meshes—part 2: numerical simulations and comparison with FEM , 2020, Archive of Applied Mechanics.

[11]  A. Idesman A new numerical approach to the solution of PDEs with optimal accuracy on irregular domains and Cartesian meshes—Part 1: the derivations for the wave, heat and Poisson equations in the 1-D and 2-D cases , 2020, Archive of Applied Mechanics.

[12]  A. Idesman,et al.  The treatment of the Neumann boundary conditions for a new numerical approach to the solution of PDEs with optimal accuracy on irregular domains and Cartesian meshes , 2020 .

[13]  A. Idesman,et al.  New 25-point stencils with optimal accuracy for 2-D heat transfer problems. Comparison with the quadratic isogeometric elements , 2020, J. Comput. Phys..

[14]  E. Dunham,et al.  Elastic wave propagation in anisotropic solids using energy-stable finite differences with weakly enforced boundary and interface conditions , 2020, J. Comput. Phys..

[15]  A. Idesman,et al.  Accurate numerical solutions of 2-D elastodynamics problems using compact high-order stencils , 2020 .

[16]  A. Idesman,et al.  Compact high-order stencils with optimal accuracy for numerical solutions of 2-D time-independent elasticity equations , 2020 .

[17]  Mohamed Aziz Bhouri,et al.  A Two-Level Parameterized Model-Order Reduction Approach for Time-Domain Elastodynamics , 2020 .

[18]  A. Idesman,et al.  A new numerical approach to the solution of the 2-D Helmholtz equation with optimal accuracy on irregular domains and Cartesian meshes , 2020 .

[19]  Heng Chi,et al.  On nonconvex meshes for elastodynamics using virtual element methods with explicit time integration , 2019, Computer Methods in Applied Mechanics and Engineering.

[20]  A. Idesman,et al.  A new 3-D numerical approach to the solution of PDEs with optimal accuracy on irregular domains and Cartesian meshes , 2019, Computer Methods in Applied Mechanics and Engineering.

[21]  T. Rabczuk,et al.  Isogeometric analysis for explicit elastodynamics using a dual-basis diagonal mass formulation , 2019, Computer Methods in Applied Mechanics and Engineering.

[22]  Hermann F. Fasel,et al.  An efficient, high-order method for solving Poisson equation for immersed boundaries: Combination of compact difference and multiscale multigrid methods , 2018, J. Comput. Phys..

[23]  Ting Song,et al.  The shifted boundary method for hyperbolic systems: Embedded domain computations of linear waves and shallow water flows , 2018, J. Comput. Phys..

[24]  T. Lin,et al.  Approximation capabilities of immersed finite element spaces for elasticity Interface problems , 2018, Numerical Methods for Partial Differential Equations.

[25]  Bruno Després,et al.  Inverse Lax-Wendroff boundary treatment for compressible Lagrange-remap hydrodynamics on Cartesian grids , 2018, J. Comput. Phys..

[26]  Samir Omerovic,et al.  Higher-order meshing of implicit geometries - part I: Integration and interpolation in cut elements , 2017, ArXiv.

[27]  Ken Mattsson,et al.  A high-order accurate embedded boundary method for first order hyperbolic equations , 2017, J. Comput. Phys..

[28]  Long Chen,et al.  An interface-fitted mesh generator and virtual element methods for elliptic interface problems , 2017, J. Comput. Phys..

[29]  Alessandro Reali,et al.  Mixed isogeometric finite cell methods for the stokes problem , 2017 .

[30]  Trond Kvamsdal,et al.  Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis , 2017 .

[31]  Marsha J. Berger,et al.  An Explicit Implicit Scheme for Cut Cells in Embedded Boundary Meshes , 2015, J. Sci. Comput..

[32]  Guo-Wei Wei,et al.  Second order method for solving 3D elasticity equations with complex interfaces , 2014, J. Comput. Phys..

[33]  Carlos Pantano,et al.  A Cartesian-based embedded geometry technique with adaptive high-order finite differences for compressible flow around complex geometries , 2014, J. Comput. Phys..

[34]  Joseph Teran,et al.  A second order virtual node algorithm for Stokes flow problems with interfacial forces, discontinuous material properties and irregular domains , 2013, J. Comput. Phys..

[35]  Ernst Rank,et al.  Geometric modeling, isogeometric analysis and the finite cell method , 2012 .

[36]  Eftychios Sifakis,et al.  A second order virtual node method for elliptic problems with interfaces and irregular domains in three dimensions , 2012, J. Comput. Phys..

[37]  Ernst Rank,et al.  Shell Finite Cell Method: A high order fictitious domain approach for thin-walled structures , 2011 .

[38]  Peter Hansbo,et al.  Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method , 2010 .

[39]  C. Macaskill,et al.  The Shortley-Weller embedded finite-difference method for the 3D Poisson equation with mixed boundary conditions , 2010, J. Comput. Phys..

[40]  Shan Zhao,et al.  Matched interface and boundary (MIB) for the implementation of boundary conditions in high‐order central finite differences , 2009, International journal for numerical methods in engineering.

[41]  Spencer J. Sherwin,et al.  A comparison of fictitious domain methods appropriate for spectral/hp element discretisations , 2008 .

[42]  HEINZ-OTTO KREISS,et al.  A Second Order Accurate Embedded Boundary Method for the Wave Equation with Dirichlet Data , 2005, SIAM J. Sci. Comput..

[43]  John J. R. Williams,et al.  A parallel fictitious domain multigrid preconditioner for the solution of Poisson's equation in complex geometries , 2005 .

[44]  Heinz-Otto Kreiss,et al.  An Embedded Boundary Method for the Wave Equation with Discontinuous Coefficients , 2005, SIAM J. Sci. Comput..

[45]  Z. Jomaa,et al.  The embedded finite difference method for the Poisson equation in a domain with an irregular boundary and Dirichlet boundary conditions , 2005 .

[46]  Phillip Colella,et al.  A cartesian grid embedded boundary method for the heat equation and poisson's equation in three dimensions , 2004 .

[47]  Peter McCorquodale,et al.  A Cartesian grid embedded boundary method for the heat equation on irregular domains , 2001 .

[48]  P. Colella,et al.  A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains , 1998 .

[49]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[50]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[51]  Jeffrey W. Banks,et al.  High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form , 2018, J. Comput. Phys..

[52]  Hans Petter Langtangen,et al.  Finite Difference Computing with PDEs , 2017 .

[53]  Phillip Colella,et al.  Author ' s personal copy A Cartesian grid embedded boundary method for solving the Poisson and heat equations with discontinuous coefficients in three dimensions , 2011 .

[54]  Eftychios Sifakis,et al.  ' s personal copy A second order virtual node method for elliptic problems with interfaces and irregular domains , 2010 .

[55]  Phillip Colella,et al.  A Cartesian grid embedded boundary method for hyperbolic conservation laws , 2006 .