Free Vibration Analysis the Cracked FGM Beam under Bending-Torsion Loading, Using GDQ Method

This paper presents a theoretical investigation of free vibration analysis of a functionally graded beam (FGM) under the bending-torsion loading using a classical elasticity theory. The FG beam is assumed to have an open edge crack. It is assumed that the material properties of the simply-supported cracked beam, vary along the beam thickness following a polynomial distribution in the thickness direction. This analysis is based on the linear fracture mechanics. First of all, governing equations and boundary conditions of the FG beam are derived using Hamilton's principle. The governing equations are solved using generalized differential quadrature (GDQ) method. By applying GDQ method, the governing differential equations convert to a linear system of algebraic equations. Then solving the eigenvalue problem, natural frequencies of the FG beam can be found. The results indicate that natural frequencies in the presence of a crack are affected by the crack ratio and location.