Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis

[1]  Hiroyoshi Matsumura,et al.  Identification of Single Mn2+ Binding Sites Required for Activation of the Mutant Proteins of E. coli RNase HI at Glu48 and/or Asp134 by X-ray Crystallography , 2005 .

[2]  Hiroyoshi Matsumura,et al.  Identification of single Mn(2+) binding sites required for activation of the mutant proteins of E.coli RNase HI at Glu48 and/or Asp134 by X-ray crystallography. , 2005, Journal of molecular biology.

[3]  Fred Dyda,et al.  Transposition of hAT elements links transposable elements and V(D)J recombination , 2004, Nature.

[4]  D. Barford,et al.  Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity , 2004, The EMBO journal.

[5]  G. Hannon,et al.  Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity , 2004, Science.

[6]  R. Crouch,et al.  Effects of RNA polymerase modifications on transcription‐induced negative supercoiling and associated R‐loop formation , 2004, Molecular microbiology.

[7]  S. Crooke,et al.  Determination of the Role of the Human RNase H1 in the Pharmacology of DNA-like Antisense Drugs* , 2004, Journal of Biological Chemistry.

[8]  W. Reznikoff,et al.  Structure/function insights into Tn5 transposition. , 2004, Current opinion in structural biology.

[9]  Laurence Lavelle,et al.  An unusual sugar conformation in the structure of an RNA/DNA decamer of the polypurine tract may affect recognition by RNase H. , 2003, Journal of molecular biology.

[10]  R. Crouch,et al.  Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. , 2003, Molecular cell.

[11]  W. Stec,et al.  Stereochemical Course of Escherichia coli RNase H. , 2003 .

[12]  W. Stec,et al.  Stereochemical Course of Escherichia coli RNase H , 2002, Chembiochem : a European journal of chemical biology.

[13]  S. Sarafianos,et al.  Mutations in the RNase H domain of HIV-1 reverse transcriptase affect the initiation of DNA synthesis and the specificity of RNase H cleavage in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  I. Rayment,et al.  Two-metal active site binding of a Tn5 transposase synaptic complex , 2002, Nature Structural Biology.

[15]  Mark Oram,et al.  Crystal structure of the fission yeast mitochondrial Holliday junction resolvase Ydc2 , 2001, The EMBO journal.

[16]  A. D. Clark,et al.  Crystal structure of HIV‐1 reverse transcriptase in complex with a polypurine tract RNA:DNA , 2001, The EMBO journal.

[17]  S. Marqusee,et al.  Co-crystal of Escherichia coli RNase HI with Mn2+ Ions Reveals Two Divalent Metals Bound in the Active Site* , 2001, The Journal of Biological Chemistry.

[18]  B. Stoddard,et al.  Comparative architecture of transposase and integrase complexes , 2001, Nature Structural Biology.

[19]  M. Itaya,et al.  The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[20]  S. Kim,et al.  Crystal structure of archaeal RNase HII: a homologue of human major RNase H. , 2000, Structure.

[21]  W. Reznikoff,et al.  Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. , 2000, Science.

[22]  K. Mizuuchi,et al.  Single Active Site Catalysis of the Successive Phosphoryl Transfer Steps by DNA Transposases Insights from Phosphorothioate Stereoselectivity , 2000, Cell.

[23]  S. Kanaya,et al.  Catalysis by Escherichia coli ribonuclease HI is facilitated by a phosphate group of the substrate. , 2000, Biochemistry.

[24]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[25]  C R Kissinger,et al.  Rapid automated molecular replacement by evolutionary search. , 1999, Acta crystallographica. Section D, Biological crystallography.

[26]  M. Itaya,et al.  Identification of the genes encoding Mn2+-dependent RNase HII and Mg2+-dependent RNase HIII from Bacillus subtilis: classification of RNases H into three families. , 1999, Biochemistry.

[27]  L. Haren,et al.  Integrating DNA: transposases and retroviral integrases. , 1999, Annual review of microbiology.

[28]  S. Marqusee,et al.  Activation/Attenuation Model for RNase H , 1998, The Journal of Biological Chemistry.

[29]  G L Verdine,et al.  Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. , 1998, Science.

[30]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[31]  S. Kanaya Enzymatic activity and protein stability of E. coli ribonuclease HI , 1998 .

[32]  S. Kanaya,et al.  Kinetic and Stoichiometric Analysis for the Binding of Escherichia coli Ribonuclease HI to RNA-DNA Hybrids Using Surface Plasmon Resonance* , 1997, The Journal of Biological Chemistry.

[33]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[34]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[35]  N. Kleckner,et al.  The Three Chemical Steps of Tn10/IS10 Transposition Involve Repeated Utilization of a Single Active Site , 1996, Cell.

[36]  H. Gross,et al.  HIV‐1 reverse transcriptase‐associated RNase H cleaves RNA/RNA in arrested complexes: implications for the mechanism by which RNase H discriminates between RNA/RNA and RNA/DNA. , 1995, The EMBO journal.

[37]  Haruki Nakamura,et al.  Atomic structure of the RuvC resolvase: A holliday junction-specific endonuclease from E. coli , 1994, Cell.

[38]  J. Steitz,et al.  A general two-metal-ion mechanism for catalytic RNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[39]  S. Kanaya,et al.  Role of histidine 124 in the catalytic function of ribonuclease HI from Escherichia coli. , 1993, The Journal of biological chemistry.

[40]  Mike Carson,et al.  RIBBONS 2.0 , 1991 .

[41]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[42]  B. Larder,et al.  Mutations within the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase abolish virus infectivity. , 1991, The Journal of general virology.

[43]  Y. Satow,et al.  Structure of ribonuclease H phased at 2 A resolution by MAD analysis of the selenomethionyl protein. , 1990, Science.

[44]  K. Morikawa,et al.  Three-dimensional structure of ribonuclease H from E. coli , 1990, Nature.

[45]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[46]  J. Hartley,et al.  Inhibition of RNase H activity and viral replication by single mutations in the 3' region of Moloney murine leukemia virus reverse transcriptase , 1989, Journal of virology.

[47]  R Lavery,et al.  The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. , 1988, Journal of biomolecular structure & dynamics.

[48]  F. V. Rantwijk,et al.  The active site , 1977 .

[49]  W. Wooster,et al.  Crystal structure of , 2005 .