Water-Stable Lithium Anode with the Three-Layer Construction for Aqueous Lithium–Air Secondary Batteries

A water-stable multilayer Li-metal electrode consisting of a lithium metal, a PEO 18 LiN(SO 2 CF 3 ) 2 ―BaTO 3 composite polymer, and a lithium-conducting glass ceramic Li 1.3S Ti 1.7S Al 0.25 P 0.9 Si 0.1 O 12 (LTAP) was proposed as the lithium anode for aqueous lithium―air secondary batteries. The addition of finely dispersed nanosize BaTiO 3 in the polymer electrolyte greatly reduced the interfacial resistance between the Li anode and the polymer electrolyte. A Li/PEO 18 LiN(SO 2 CF 3 ) 2 ―10 wt % BaTiO 3 /LTAP electrode showed a total resistance of 175 Ω cm 2 in a 1 M aqueous LiCl solution at 60°C, with no change in the electrode resistance over a month. The Li/PEO 18 LiN(SO 2 CF 3 ) 2 ―10 wt % BaTiO 3 /LTAP/aqueous 1 M LiCl/Pt air cell had a stable open-circuit voltage of 3.80 V, which was equivalent to that calculated from the cell reaction of 2Li + 1/2O 2 + H 2 O = 2LiOH. The cell exhibited a stable and reversible discharge/charge performance of 0.5 mA cm ―2 at 60°C, suggesting excellent reversibility of the lithium oxidation reduction reaction for the Li/PEO 18 LiN(SO 2 CF 3 ) 2 ―10 wt % BaTiO 3 /LTAP electrode.

[1]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[2]  Tao Zhang,et al.  Lithium anode for lithium-air secondary batteries , 2008 .

[3]  Tao Zhang,et al.  Li∕Polymer Electrolyte∕Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium–Air Secondary Batteries with an Aqueous Electrolyte , 2008 .

[4]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[5]  M. Armand,et al.  Building better batteries , 2008, Nature.

[6]  S. S. Sandhu,et al.  Diffusion-limited model for a lithium/air battery with an organic electrolyte , 2007 .

[7]  N. Imanishi,et al.  Novel Composite Anodes Consisting of Lithium Transition-Metal Nitrides and Transition Metal Oxides for Rechargeable Li-Ion Batteries , 2006 .

[8]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[9]  Matthew H. Ervin,et al.  Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery , 2003 .

[10]  F. E. Little,et al.  Characteristics of lithium-ion-conducting composite polymer-glass secondary cell electrolytes , 2002 .

[11]  B. Kumar,et al.  Ionic conductivity and ambient temperature Li electrode reaction in composite polymer electrolytes containing nanosize alumina , 2002 .

[12]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[13]  D. Linden Handbook Of Batteries , 2001 .

[14]  Bruno Scrosati,et al.  Impedance Spectroscopy Study of PEO‐Based Nanocomposite Polymer Electrolytes , 2000 .

[15]  A. Zanelli,et al.  Composite polymer electrolytes with improved lithium metal electrode interfacial properties: I. Electrochemical properties of dry PEO-LiX systems , 1998 .

[16]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[17]  J. Fu Fast Li+ ion conduction in Li2O–(Al2O3 Ga22O3)–TiO2–P2O5 glass–ceramics , 1998 .

[18]  K. Abraham,et al.  Highly Conductive PEO-like Polymer Electrolytes , 1997 .

[19]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[20]  K. M. Abraham,et al.  Room temperature rechargeable polymer electrolyte batteries , 1995 .

[21]  B. Boukamp A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems , 1986 .