Fractional order filter with two fractional elements of dependant orders

This work is aimed at generalizing the design of continuous-time filters in the non-integer-order (fractional-order) domain. In particular, we consider here the case where a filter is constructed using two fractional-order elements of different orders @a and @b. The design equations for the filter are generalized taking into consideration stability constraints. Also, the relations for the critical frequency points like maximum and minimum frequency points, the half power frequency and the right phase frequency are derived. The design technique presented here is related to a fractional order filter with dependent orders @a and @b related by a ratio k. Frequency transformations from the fractional low-pass filter to both fractional high-pass and band-pass filters are discussed. Finally, case studies of KHN active filter design examples are illustrated and supported with numerical and ADS simulations.

[1]  Todd C Doehring,et al.  Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. , 2005, Journal of biomechanical engineering.

[2]  K. Biswas,et al.  Performance study of fractional order integrator using single-component fractional order element , 2011, IET Circuits Devices Syst..

[3]  A. G. Radwan,et al.  Butterworth passive filter in the fractional-order , 2011, ICM 2011 Proceeding.

[4]  A. Sedra Microelectronic circuits , 1982 .

[5]  Jeong-Soo Lim,et al.  A modified Chebyshev bandpass filter with attenuation poles in the stopband , 1997 .

[6]  Alexander Kushpel,et al.  Optimal Approximation on , 2000 .

[7]  Calvin Coopmans,et al.  Purely Analog Fractional Order PI Control Using Discrete Fractional Capacitors (Fractors): Synthesis and Experiments , 2009 .

[8]  Ahmed S. Elwakil,et al.  Field programmable analogue array implementation of fractional step filters , 2010, IET Circuits Devices Syst..

[9]  B. T. Krishna,et al.  Active and Passive Realization of Fractance Device of Order 1/2 , 2008 .

[10]  Ravi P. Agarwal,et al.  Ordinary and Partial Differential Equations: With Special Functions, Fourier Series, and Boundary Value Problems , 2008 .

[11]  Ahmed S. Elwakil,et al.  Fractional-order sinusoidal oscillators: Design procedure and practical examples , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  K. Salama,et al.  Theory of Fractional Order Elements Based Impedance Matching Networks , 2011, IEEE Microwave and Wireless Components Letters.

[13]  Les Thede,et al.  Practical Analog And Digital Filter Design , 2004 .

[14]  A. Elwakil,et al.  On the stability of linear systems with fractional-order elements , 2009 .

[15]  Khaled N. Salama,et al.  Passive and Active Elements Using Fractional Circuit , 2011 .

[16]  Yoshiaki Hirano,et al.  Simulation of Fractal Immittance by Analog Circuits: An Approach to the Optimized Circuits , 1999 .

[17]  B. T. Krishna Studies on fractional order differentiators and integrators: A survey , 2011, Signal Process..

[18]  Ahmed Gomaa Radwan,et al.  Stability and non-standard finite difference method of the generalized Chua's circuit , 2011, Comput. Math. Appl..

[19]  Ahmed S. Elwakil,et al.  On the Generalization of Second-Order Filters to the fractional-Order Domain , 2009, J. Circuits Syst. Comput..

[20]  M. Nakagawa,et al.  Basic Characteristics of a Fractance Device , 1992 .

[21]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[22]  Adel S. Sedra,et al.  Filter Theory and Design: Active and Passive , 1977 .

[23]  Khaled N. Salama,et al.  The fractional-order modeling and synchronization of electrically coupled neuron systems , 2012, Comput. Math. Appl..

[24]  Kazuhiro Saito,et al.  Simulation of Power-Law Relaxations by Analog Circuits : Fractal Distribution of Relaxation Times and Non-integer Exponents , 1993 .

[25]  Isabel S. Jesus,et al.  Fractional Electrical Impedances in Botanical Elements , 2008 .

[26]  Ahmed S. Elwakil,et al.  First-Order Filters Generalized to the fractional Domain , 2008, J. Circuits Syst. Comput..

[27]  Muhammad Faryad,et al.  Fractional Rectangular Waveguide , 2007 .

[28]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[29]  Yangquan Chen,et al.  A Fractional Order Proportional and Derivative (FOPD) Motion Controller: Tuning Rule and Experiments , 2010, IEEE Transactions on Control Systems Technology.

[30]  Truong Q. Nguyen,et al.  Analog flat filter design , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[31]  Alina Voda,et al.  Optimal Approximation, Simulation and Analog Realization of the Fundamental Fractional Order Transfer Function , 2007, Int. J. Appl. Math. Comput. Sci..

[32]  Steve Winder,et al.  Analog and digital filter design , 2002 .

[33]  Khaled N. Salama,et al.  Passive and Active Elements Using Fractional ${\rm L}_{\beta} {\rm C}_{\alpha}$ Circuit , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[34]  K. Salama,et al.  Fractional Smith Chart Theory , 2011, IEEE Microwave and Wireless Components Letters.

[35]  Dong Yong Kim,et al.  A modified low-pass filter with progressively diminishing ripples , 1994 .