Reducing radio energy consumption of key management protocols for wireless sensor networks

The security of sensor networks is a challenging area. Key management is one of the crucial parts in constructing the security among sensor nodes. However, key management protocols require a great deal of energy consumption, particularly in the transmission of initial key negotiation messages. In this paper, we examine three previously published sensor network security schemes: SPINS and C&R for master-key-based schemes, and Eschenhaur-Gligor (EG) for distributed-key-based schemes. We then present two new low-power schemes, which we call BROSK and OKS as alternatives to master-key-based schemes and distributed-key-based schemes, respectively. Compared to SPINS and C&R protocols, BROSK can reduce energy consumption by up to 12/spl times/ by reducing the number of data transmissions in the key negotiation process. Compared with EG, OKS reduces energy by up to 96% and reduces memory requirements by up to 78%.